|
|
|
@@ -47,7 +47,6 @@ TypeId OnnxModelParser::GetDateTypeFromOnnx(onnx::TensorProto_DataType onnx_type |
|
|
|
|
|
|
|
std::vector<int32_t> OnnxModelParser::GetDimsFromOnnxValue(const onnx::ValueInfoProto &onnx_value) { |
|
|
|
std::vector<int32_t> dims; |
|
|
|
const auto shape_info = onnx_value.type().tensor_type().shape(); |
|
|
|
for (const auto &it : onnx_value.type().tensor_type().shape().dim()) { |
|
|
|
dims.emplace_back(it.dim_value()); |
|
|
|
} |
|
|
|
@@ -97,7 +96,7 @@ STATUS OnnxModelParser::SetGraphConstTensor(const onnx::GraphProto &onnx_graph, |
|
|
|
if (CopyOnnxTensorData(onnx_const_value, tensor.get())) { |
|
|
|
return RET_ERROR; |
|
|
|
} |
|
|
|
const auto index = tensor_cache->AddTensor(onnx_const_value.name(), tensor.release(), GRAPH_INPUT); |
|
|
|
// const auto index = tensor_cache->AddTensor(onnx_const_value.name(), tensor.release(), GRAPH_INPUT); |
|
|
|
// MS_LOGD("add const tensor: %s, index %d", onnx_const_value.name().c_str(), index) |
|
|
|
} |
|
|
|
return RET_OK; |
|
|
|
@@ -290,11 +289,6 @@ void OnnxModelParser::SetOpQuantParams(const onnx::GraphProto &onnx_graph, const |
|
|
|
// MS_LOGE("new QuantParamT failed, node: %s", dst_op->name.c_str()); |
|
|
|
return; |
|
|
|
} |
|
|
|
// std::unique_ptr<mindspore::lite::QuantParamArrayT> quant_param_array(new (std::nothrow) QuantParamArrayT()); |
|
|
|
if (quant_param == nullptr) { |
|
|
|
// MS_LOGE("new QuantParamArrayT failed, node: %s", dst_op->name.c_str()); |
|
|
|
return; |
|
|
|
} |
|
|
|
int argNum = 0; |
|
|
|
for (const auto &onnx_node_attr : node.attribute()) { |
|
|
|
if (onnx_node_attr.name() == "Y_scale") { |
|
|
|
|