Browse Source

!9520 Add style transfer course

From: @liuxiao78
Reviewed-by: @hangangqiang,@zhang_xue_tong
Signed-off-by: @zhang_xue_tong
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
a6207805e7
9 changed files with 305 additions and 0 deletions
  1. BIN
      model_zoo/official/lite/posenet/images/posenet_detection.png
  2. +305
    -0
      model_zoo/official/lite/style_transfer/README.md
  3. BIN
      model_zoo/official/lite/style_transfer/images/home.png
  4. BIN
      model_zoo/official/lite/style_transfer/images/install.jpg
  5. BIN
      model_zoo/official/lite/style_transfer/images/project_structure.png
  6. BIN
      model_zoo/official/lite/style_transfer/images/run_app.PNG
  7. BIN
      model_zoo/official/lite/style_transfer/images/sdk_management.png
  8. BIN
      model_zoo/official/lite/style_transfer/images/style_transfer_demo.png
  9. BIN
      model_zoo/official/lite/style_transfer/images/style_transfer_result.png

BIN
model_zoo/official/lite/posenet/images/posenet_detection.png View File

Before After
Width: 575  |  Height: 994  |  Size: 467 kB Width: 419  |  Height: 724  |  Size: 260 kB

+ 305
- 0
model_zoo/official/lite/style_transfer/README.md View File

@@ -0,0 +1,305 @@
# MindSpore Lite 端侧骨骼检测demo(Android)

本示例程序演示了如何在端侧利用MindSpore Lite API以及MindSpore Lite风格迁移模型完成端侧推理,根据demo内置的标准图片更换目标图片的艺术风格,并在App图像预览界面中显示出来。

## 运行依赖

- Android Studio >= 3.2 (推荐4.0以上版本)
- NDK 21.3
- CMake 3.10
- Android SDK >= 26

## 构建与运行

1. 在Android Studio中加载本示例源码,并安装相应的SDK(指定SDK版本后,由Android Studio自动安装)。

![start_home](images/home.png)

启动Android Studio后,点击`File->Settings->System Settings->Android SDK`,勾选相应的SDK。如下图所示,勾选后,点击`OK`,Android Studio即可自动安装SDK。

![start_sdk](images/sdk_management.png)

使用过程中若出现Android Studio配置问题,可参考第5项解决。

2. 连接Android设备,运行骨应用程序。

通过USB连接Android设备调试,点击`Run 'app'`即可在你的设备上运行本示例项目。
> 编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。

![run_app](images/run_app.PNG)

Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。

3. 在Android设备上,点击“继续安装”,安装完即可查看到推理结果。

![install](images/install.jpg)

使用风格迁移demo时,用户可先导入或拍摄自己的图片,然后选择一种预置风格,得到推理后的新图片,最后使用还原或保存新图片功能。

原始图片:

![sult](images/style_transfer_demo.png)

风格迁移后的新图片:

![sult](images/style_transfer_result.png)

4. Android Studio 配置问题解决方案可参考下表:

| | 报错 | 解决方案 |
| ---- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 1 | Gradle sync failed: NDK not configured. | 在local.properties中指定安装的ndk目录:ndk.dir={ndk的安装目录} |
| 2 | Requested NDK version did not match the version requested by ndk.dir | 可手动下载相应的[NDK版本](https://developer.android.com/ndk/downloads?hl=zh-cn),并在Project Structure - Android NDK location设置中指定SDK的位置(可参考下图完成) |
| 3 | This version of Android Studio cannot open this project, please retry with Android Studio or newer. | 在工具栏-help-Checkout for Updates中更新版本 |
| 4 | SSL peer shut down incorrectly | 重新构建 |

![project_structure](images/project_structure.png)

## 示例程序详细说明

风格Android示例程序通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能,在[Runtime](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/runtime.html)中完成模型推理的过程。

### 示例程序结构

```text

├── app
│   ├── build.gradle # 其他Android配置文件
│   ├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
│   ├── proguard-rules.pro
│   └── src
│   ├── main
│   │   ├── AndroidManifest.xml # Android配置文件
│   │   ├── java # java层应用代码
│   │   │   └── com
│   │   │   └── mindspore
│   │   │   └── posenetdemo # 图像处理及推理流程实现
│   │   │   ├── CameraDataDealListener.java
│   │   │   ├── ImageUtils.java
│   │   │   ├── MainActivity.java
│   │   │   ├── PoseNetFragment.java
│   │   │   ├── Posenet.java #
│   │   │   └── TestActivity.java
│   │   └── res # 存放Android相关的资源文件
│   └── test
└── ...

```

### 下载及部署模型文件

从MindSpore Model Hub中下载模型文件,本示例程序中使用的目标检测模型文件为`posenet_model.ms`,同样通过`download.gradle`脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。

> 若下载失败请手动下载模型文件,style_predict_quant.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/style_lite/style_predict_quant.ms),以及style_transfer_quant.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/style_lite/style_transfer_quant.ms)。

### 编写端侧推理代码

在风格迁移demo中,使用Java API实现端测推理。相比于C++ API,Java API可以直接在Java Class中调用,无需实现JNI层的相关代码,具有更好的便捷性。

风格迁移demo推理代码流程如下,完整代码请参见:`src/main/java/com/mindspore/styletransferdemo/StyleTransferModelExecutor.java`。

1. 加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。

- 加载模型:从文件系统中读取MindSpore Lite模型,并进行模型解析。

```java
// Load the .ms model.
style_predict_model = new Model();
if (!style_predict_model.loadModel(mContext, "style_predict_quant.ms")) {
Log.e("MS_LITE", "Load style_predict_model failed");
}

style_transform_model = new Model();
if (!style_transform_model.loadModel(mContext, "style_transfer_quant.ms")) {
Log.e("MS_LITE", "Load style_transform_model failed");
}
```

- 创建配置上下文:创建配置上下文`MSConfig`,保存会话所需的一些基本配置参数,用于指导图编译和图执行。

```java
msConfig = new MSConfig();
if (!msConfig.init(DeviceType.DT_CPU, NUM_THREADS, CpuBindMode.MID_CPU)) {
Log.e("MS_LITE", "Init context failed");
}
```

- 创建会话:创建`LiteSession`,并调用`init`方法将上一步得到`MSConfig`配置到会话中。

```java
// Create the MindSpore lite session.
Predict_session = new LiteSession();
if (!Predict_session.init(msConfig)) {
Log.e("MS_LITE", "Create Predict_session failed");
msConfig.free();
}

Transform_session = new LiteSession();
if (!Transform_session.init(msConfig)) {
Log.e("MS_LITE", "Create Predict_session failed");
msConfig.free();
}
msConfig.free();
```

- 加载模型文件并构建用于推理的计算图

```java
// Complile graph.
if (!Predict_session.compileGraph(style_predict_model)) {
Log.e("MS_LITE", "Compile style_predict graph failed");
style_predict_model.freeBuffer();
}
if (!Transform_session.compileGraph(style_transform_model)) {
Log.e("MS_LITE", "Compile style_transform graph failed");
style_transform_model.freeBuffer();
}

// Note: when use model.freeBuffer(), the model can not be complile graph again.
style_predict_model.freeBuffer();
style_transform_model.freeBuffer();
```

2. 输入数据: Java目前支持`byte[]`或者`ByteBuffer`两种类型的数据,设置输入Tensor的数据。

- 在输入数据之前,将float数组转换为byte数组。

```java

public static byte[] floatArrayToByteArray(float[] floats) {
ByteBuffer buffer = ByteBuffer.allocate(4 * floats.length);
buffer.order(ByteOrder.nativeOrder());
FloatBuffer floatBuffer = buffer.asFloatBuffer();
floatBuffer.put(floats);
return buffer.array();
}
```

- 通过`ByteBuffer`输入数据。`contentImage`为用户提供的图片,`styleBitmap`为预置风格图片。

```java
public ModelExecutionResult execute(Bitmap contentImage, Bitmap styleBitmap) {
Log.i(TAG, "running models");
fullExecutionTime = SystemClock.uptimeMillis();
preProcessTime = SystemClock.uptimeMillis();
ByteBuffer contentArray =
ImageUtils.bitmapToByteBuffer(contentImage, CONTENT_IMAGE_SIZE, CONTENT_IMAGE_SIZE, 0, 255);
ByteBuffer input = ImageUtils.bitmapToByteBuffer(styleBitmap, STYLE_IMAGE_SIZE, STYLE_IMAGE_SIZE, 0, 255);
```

3. 对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。

- 使用`runGraph`对预置图片进行模型推理,并获取结果`Predict_results`。

```java
List<MSTensor> Predict_inputs = Predict_session.getInputs();
if (Predict_inputs.size() != 1) {
return null;
}
MSTensor Predict_inTensor = Predict_inputs.get(0);
Predict_inTensor.setData(input);

preProcessTime = SystemClock.uptimeMillis() - preProcessTime;
stylePredictTime = SystemClock.uptimeMillis();


if (!Predict_session.runGraph()) {
Log.e("MS_LITE", "Run Predict_graph failed");
return null;
}
stylePredictTime = SystemClock.uptimeMillis() - stylePredictTime;
Log.d(TAG, "Style Predict Time to run: " + stylePredictTime);

// Get output tensor values.
List<String> tensorNames = Predict_session.getOutputTensorNames();
Map<String, MSTensor> outputs = Predict_session.getOutputMapByTensor();
Set<Map.Entry<String, MSTensor>> entrys = outputs.entrySet();

float[] Predict_results = null;
for (String tensorName : tensorNames) {
MSTensor output = outputs.get(tensorName);
if (output == null) {
Log.e("MS_LITE", "Can not find Predict_session output " + tensorName);
return null;
}
int type = output.getDataType();
Predict_results = output.getFloatData();
}
```

- 利用上一步获取的结果,再次对用户图片进行模型推理,得到风格转换的数据`transform_results`。

```java
List<MSTensor> Transform_inputs = Transform_session.getInputs();
// transform model have 2 input tensor, tensor0: 1*1*1*100, tensor1;1*384*384*3
MSTensor Transform_inputs_inTensor0 = Transform_inputs.get(0);
Transform_inputs_inTensor0.setData(floatArrayToByteArray(Predict_results));

MSTensor Transform_inputs_inTensor1 = Transform_inputs.get(1);
Transform_inputs_inTensor1.setData(contentArray);


styleTransferTime = SystemClock.uptimeMillis();

if (!Transform_session.runGraph()) {
Log.e("MS_LITE", "Run Transform_graph failed");
return null;
}

styleTransferTime = SystemClock.uptimeMillis() - styleTransferTime;
Log.d(TAG, "Style apply Time to run: " + styleTransferTime);

postProcessTime = SystemClock.uptimeMillis();

// Get output tensor values.
List<String> Transform_tensorNames = Transform_session.getOutputTensorNames();
Map<String, MSTensor> Transform_outputs = Transform_session.getOutputMapByTensor();

float[] transform_results = null;
for (String tensorName : Transform_tensorNames) {
MSTensor output1 = Transform_outputs.get(tensorName);
if (output1 == null) {
Log.e("MS_LITE", "Can not find Transform_session output " + tensorName);
return null;
}
transform_results = output1.getFloatData();
}
```

- 对输出节点的数据进行处理,得到推理后的最终结果。

```java
float[][][][] outputImage = new float[1][][][]; // 1 384 384 3
for (int x = 0; x < 1; x++) {
float[][][] arrayThree = new float[CONTENT_IMAGE_SIZE][][];
for (int y = 0; y < CONTENT_IMAGE_SIZE; y++) {
float[][] arrayTwo = new float[CONTENT_IMAGE_SIZE][];
for (int z = 0; z < CONTENT_IMAGE_SIZE; z++) {
float[] arrayOne = new float[3];
for (int i = 0; i < 3; i++) {
int n = i + z * 3 + y * CONTENT_IMAGE_SIZE * 3 + x * CONTENT_IMAGE_SIZE * CONTENT_IMAGE_SIZE * 3;
arrayOne[i] = transform_results[n];
}
arrayTwo[z] = arrayOne;
}
arrayThree[y] = arrayTwo;
}
outputImage[x] = arrayThree;
}


Bitmap styledImage =
ImageUtils.convertArrayToBitmap(outputImage, CONTENT_IMAGE_SIZE, CONTENT_IMAGE_SIZE);
postProcessTime = SystemClock.uptimeMillis() - postProcessTime;

fullExecutionTime = SystemClock.uptimeMillis() - fullExecutionTime;
Log.d(TAG, "Time to run everything: $" + fullExecutionTime);

return new ModelExecutionResult(styledImage,
preProcessTime,
stylePredictTime,
styleTransferTime,
postProcessTime,
fullExecutionTime,
formatExecutionLog());
```

BIN
model_zoo/official/lite/style_transfer/images/home.png View File

Before After
Width: 854  |  Height: 589  |  Size: 40 kB

BIN
model_zoo/official/lite/style_transfer/images/install.jpg View File

Before After
Width: 500  |  Height: 400  |  Size: 27 kB

BIN
model_zoo/official/lite/style_transfer/images/project_structure.png View File

Before After
Width: 1112  |  Height: 676  |  Size: 37 kB

BIN
model_zoo/official/lite/style_transfer/images/run_app.PNG View File

Before After
Width: 365  |  Height: 66  |  Size: 5.2 kB

BIN
model_zoo/official/lite/style_transfer/images/sdk_management.png View File

Before After
Width: 1373  |  Height: 891  |  Size: 89 kB

BIN
model_zoo/official/lite/style_transfer/images/style_transfer_demo.png View File

Before After
Width: 418  |  Height: 766  |  Size: 287 kB

BIN
model_zoo/official/lite/style_transfer/images/style_transfer_result.png View File

Before After
Width: 419  |  Height: 764  |  Size: 314 kB

Loading…
Cancel
Save