|
|
|
@@ -0,0 +1,173 @@ |
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import os |
|
|
|
import numpy as np |
|
|
|
from mindspore.communication.management import get_rank |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore import Parameter |
|
|
|
from mindspore import context |
|
|
|
from mindspore.ops import operations as P |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore.train import Model |
|
|
|
from mindspore.context import ParallelMode |
|
|
|
from mindspore.communication.management import init |
|
|
|
from mindspore.communication.management import get_group_size |
|
|
|
|
|
|
|
|
|
|
|
class FakeDataInitMode: |
|
|
|
RandomInit = 0 |
|
|
|
OnesInit = 1 |
|
|
|
UniqueInit = 2 |
|
|
|
ZerosInit = 3 |
|
|
|
|
|
|
|
class FakeData: |
|
|
|
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), num_class=10, |
|
|
|
random_offset=0, use_parallel=False, fakedata_mode=FakeDataInitMode.RandomInit): |
|
|
|
|
|
|
|
self.size = size |
|
|
|
self.rank_batch_size = batch_size |
|
|
|
self.total_batch_size = self.rank_batch_size |
|
|
|
self.random_offset = random_offset |
|
|
|
self.image_size = image_size |
|
|
|
self.num_class = num_class |
|
|
|
self.rank_size = 1 |
|
|
|
self.rank_id = 0 |
|
|
|
self.batch_index = 0 |
|
|
|
self.image_data_type = np.float32 |
|
|
|
self.label_data_type = np.float32 |
|
|
|
self.is_onehot = True |
|
|
|
self.fakedata_mode = fakedata_mode |
|
|
|
|
|
|
|
if use_parallel: |
|
|
|
if 'CONTEXT_DEVICE_TARGET' in os.environ and os.environ['CONTEXT_DEVICE_TARGET'] == 'GPU': |
|
|
|
init(backend_name='nccl') |
|
|
|
else: |
|
|
|
init(backend_name='hccl') |
|
|
|
self.rank_size = get_group_size() |
|
|
|
self.rank_id = get_rank() |
|
|
|
self.total_batch_size = self.rank_batch_size * self.rank_size |
|
|
|
assert self.size % self.total_batch_size == 0 |
|
|
|
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size |
|
|
|
|
|
|
|
def get_dataset_size(self): |
|
|
|
return int(self.size / self.total_batch_size) |
|
|
|
|
|
|
|
def get_reeat_count(self): |
|
|
|
return 1 |
|
|
|
|
|
|
|
def set_image_data_type(self, data_type): |
|
|
|
self.image_data_type = data_type |
|
|
|
|
|
|
|
def set_label_data_type(self, data_type): |
|
|
|
self.label_data_type = data_type |
|
|
|
|
|
|
|
def set_label_onehot(self, is_onehot=True): |
|
|
|
self.is_onehot = is_onehot |
|
|
|
|
|
|
|
def create_tuple_iterator(self, num_epochs=-1, do_copy=False): |
|
|
|
return self |
|
|
|
|
|
|
|
def __getitem__(self, batch_index): |
|
|
|
if batch_index * self.total_batch_size >= len(self): |
|
|
|
raise IndexError("{} index out of range".format(self.__class__.__name__)) |
|
|
|
rng_state = np.random.get_state() |
|
|
|
np.random.seed(batch_index + self.random_offset) |
|
|
|
if self.fakedata_mode == FakeDataInitMode.OnesInit: |
|
|
|
img = np.ones(self.total_batch_data_size) |
|
|
|
elif self.fakedata_mode == FakeDataInitMode.ZerosInit: |
|
|
|
img = np.zeros(self.total_batch_data_size) |
|
|
|
elif self.fakedata_mode == FakeDataInitMode.UniqueInit: |
|
|
|
total_size = 1 |
|
|
|
for i in self.total_batch_data_size: |
|
|
|
total_size = total_size* i |
|
|
|
img = np.reshape(np.arange(total_size)*0.0001, self.total_batch_data_size) |
|
|
|
else: |
|
|
|
img = np.random.randn(*self.total_batch_data_size) |
|
|
|
target = np.random.randint(0, self.num_class, size=(self.rank_size, self.rank_batch_size)) |
|
|
|
np.random.set_state(rng_state) |
|
|
|
img = img[self.rank_id] |
|
|
|
target = target[self.rank_id] |
|
|
|
img_ret = img.astype(self.image_data_type) |
|
|
|
target_ret = target.astype(self.label_data_type) |
|
|
|
if self.is_onehot: |
|
|
|
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_class)) |
|
|
|
target_onehot[np.arange(self.rank_batch_size), target] = 1 |
|
|
|
target_ret = target_onehot.astype(self.label_data_type) |
|
|
|
return Tensor(img_ret), Tensor(target_ret) |
|
|
|
|
|
|
|
def __len__(self): |
|
|
|
return self.size |
|
|
|
|
|
|
|
def __iter__(self): |
|
|
|
self.batch_index = 0 |
|
|
|
return self |
|
|
|
|
|
|
|
def reset(self): |
|
|
|
self.batch_index = 0 |
|
|
|
|
|
|
|
def __next__(self): |
|
|
|
if self.batch_index * self.total_batch_size < len(self): |
|
|
|
data = self[self.batch_index] |
|
|
|
self.batch_index += 1 |
|
|
|
return data |
|
|
|
raise StopIteration |
|
|
|
|
|
|
|
|
|
|
|
class NetWithSparseGatherV2(nn.Cell): |
|
|
|
def __init__(self, strategy=None, sparse=True): |
|
|
|
super(NetWithSparseGatherV2, self).__init__() |
|
|
|
self.axis = 0 |
|
|
|
self.sparse = sparse |
|
|
|
if sparse: |
|
|
|
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight") |
|
|
|
self.gather = P.SparseGatherV2() |
|
|
|
else: |
|
|
|
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight") |
|
|
|
self.gather = P.GatherV2() |
|
|
|
if strategy is not None: |
|
|
|
self.gather.shard(strategy) |
|
|
|
|
|
|
|
def construct(self, indices): |
|
|
|
x = self.gather(self.weight, indices, self.axis) |
|
|
|
return x |
|
|
|
|
|
|
|
def train_mindspore_impl(self, indices, epoch, batch_size, use_parallel=True): |
|
|
|
ds = FakeData(size=8, batch_size=batch_size, num_class=8, image_size=(), use_parallel=use_parallel) |
|
|
|
ds.set_image_data_type(np.int32) |
|
|
|
net = self |
|
|
|
net.set_train() |
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
optimizer = nn.Adam(net.trainable_params()) |
|
|
|
optimizer.target = "CPU" |
|
|
|
model = Model(net, loss, optimizer) |
|
|
|
for _ in range(epoch): |
|
|
|
model.train(1, ds, dataset_sink_mode=False) |
|
|
|
output = net(indices) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
def test_allreduce_sparsegatherv2_adam_auto_parallel(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') |
|
|
|
init(backend_name='hccl') |
|
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8, gradients_mean=True) |
|
|
|
indices = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]).astype(np.int32)) |
|
|
|
epoch = 3 |
|
|
|
batch_size = 1 |
|
|
|
context.set_context(enable_sparse=True) |
|
|
|
net = NetWithSparseGatherV2(sparse=True) |
|
|
|
output_sparse = net.train_mindspore_impl(indices, epoch, batch_size) |
|
|
|
net = NetWithSparseGatherV2(sparse=False) |
|
|
|
output = net.train_mindspore_impl(indices, epoch, batch_size) |
|
|
|
assert np.allclose(output.asnumpy(), output_sparse.asnumpy(), 0.001, 0.001) |