Merge pull request !7177 from zhoufeng/cpp-infer-310tags/v1.1.0
| @@ -69,19 +69,9 @@ include_directories(${PYTHON_INCLUDE_DIRS}) | |||
| set(MS_CCSRC_PATH ${CMAKE_SOURCE_DIR}/mindspore/ccsrc) | |||
| set(MS_CCSRC_BUILD_PATH ${BUILD_PATH}/mindspore/mindspore/ccsrc) | |||
| if (ENABLE_GE) | |||
| link_directories(${CMAKE_SOURCE_DIR}/third_party/ge/lib) | |||
| elseif(ENABLE_D OR ENABLE_TESTCASES) | |||
| if (ENABLE_D OR ENABLE_ACL OR ENABLE_TESTCASES) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/dependency_graphengine.cmake) | |||
| endif() | |||
| if (ENABLE_GE OR ENABLE_D OR ENABLE_TESTCASES) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/graphengine/inc) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/graphengine/inc/external) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/graphengine/inc/framework) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/graphengine/third_party/fwkacllib/inc) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/graphengine/third_party/fwkacllib/inc/toolchain) | |||
| endif() | |||
| endif () | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fvisibility=hidden") | |||
| add_subdirectory(mindspore/ccsrc) | |||
| @@ -23,9 +23,9 @@ usage() | |||
| { | |||
| echo "Usage:" | |||
| echo "bash build.sh [-d] [-r] [-v] [-c on|off] [-t on|off] [-g on|off] [-h] [-b ge] [-m infer|train] \\" | |||
| echo " [-a on|off] [-p on|off] [-i] [-L] [-R] [-D on|off] [-j[n]] [-e gpu|d|cpu] \\" | |||
| echo " [-a on|off] [-p on|off] [-i] [-L] [-R] [-D on|off] [-j[n]] [-e gpu|ascend|cpu|acl] \\" | |||
| echo " [-P on|off] [-z [on|off]] [-M on|off] [-V 9.2|10.1] [-I arm64|arm32|x86_64] [-K] \\" | |||
| echo " [-B on|off] [-w on|off] [-E] [-l on|off] [-n full|lite|off] [-T on|off] \\" | |||
| echo " [-B on|off] [-E] [-l on|off] [-n full|lite|off] [-T on|off] \\" | |||
| echo " [-A [cpp|java|object-c] [-C on|off] [-o on|off] [-S on|off] [-k on|off] [-W sse|neon|avx|off] \\" | |||
| echo "" | |||
| echo "Options:" | |||
| @@ -45,7 +45,7 @@ usage() | |||
| echo " -i Enable increment building, default off" | |||
| echo " -L Enable load ANF-IR as input of 'infer', default off" | |||
| echo " -j[n] Set the threads when building (Default: -j8)" | |||
| echo " -e Use gpu, d or cpu" | |||
| echo " -e Use cpu, gpu, ascend or acl" | |||
| echo " -P Enable dump anf graph to file in ProtoBuffer format, default on" | |||
| echo " -D Enable dumping of function graph ir, default on" | |||
| echo " -z Compile dataset & mindrecord, default on" | |||
| @@ -55,7 +55,6 @@ usage() | |||
| echo " -I Enable compiling mindspore lite for arm64, arm32 or x86_64, default disable mindspore lite compilation" | |||
| echo " -K Compile with AKG, default on" | |||
| echo " -s Enable serving module, default off" | |||
| echo " -w Enable acl module, default off" | |||
| echo " -B Enable debugger, default on" | |||
| echo " -E Enable IBVERBS for parameter server, default off" | |||
| echo " -l Compile with python dependency, default on" | |||
| @@ -225,6 +224,9 @@ checkopts() | |||
| ENABLE_D="on" | |||
| ENABLE_CPU="on" | |||
| ENABLE_SERVING="on" | |||
| elif [[ "X$OPTARG" == "Xacl" ]]; then | |||
| ENABLE_SERVING="on" | |||
| ENABLE_ACL="on" | |||
| elif [[ "X$OPTARG" == "Xcpu" ]]; then | |||
| ENABLE_CPU="on" | |||
| else | |||
| @@ -11,7 +11,7 @@ include(${GE_SOURCE_DIR}/cmake/external_libs/onnx.cmake) | |||
| include(${GE_SOURCE_DIR}/cmake/external_libs/securec.cmake) | |||
| # for UT, find slog and error_manager from local prebuild | |||
| if (NOT ENABLE_D) | |||
| if (NOT ENABLE_D AND NOT ENABLE_ACL) | |||
| set(GE_PREBUILD_PATH ${GE_SOURCE_DIR}/third_party/prebuild/${CMAKE_HOST_SYSTEM_PROCESSOR}) | |||
| find_library(slog libslog.so ${GE_PREBUILD_PATH}) | |||
| find_library(error_manager liberror_manager.so ${GE_PREBUILD_PATH}) | |||
| @@ -28,6 +28,7 @@ elseif (DEFINED ENV{D_LINK_PATH}) | |||
| message(FATAL_ERROR "Running on a unsupported architecture: ${SYSTEM_TYPE}, build terminated") | |||
| endif() | |||
| set(GE_LIB_PATH ${GE_LIB_PATH}/${GE_SYS_ARCH}) | |||
| find_library(c_sec libc_sec.so ${GE_LIB_PATH}) | |||
| find_library(slog libslog.so ${GE_LIB_PATH}) | |||
| find_library(mmpa libmmpa.so ${GE_LIB_PATH}) | |||
| find_library(runtime libruntime.so ${GE_LIB_PATH}) | |||
| @@ -44,8 +45,8 @@ else() | |||
| else() | |||
| set(ASCEND_PATH /usr/local/Ascend) | |||
| endif() | |||
| set(ASCEND_DRIVER_PATH ${ASCEND_PATH}/driver/lib64/common) | |||
| set(ASCEND_RUNTIME_PATH ${ASCEND_PATH}/fwkacllib/lib64) | |||
| set(ASCEND_DRIVER_PATH ${ASCEND_PATH}/driver/lib64/common ${ASCEND_PATH}/driver/lib64) | |||
| set(ASCEND_RUNTIME_PATH ${ASCEND_PATH}/fwkacllib/lib64 ${ASCEND_PATH}/acllib/lib64 ${ASCEND_PATH}/atc/lib64) | |||
| find_library(c_sec libc_sec.so ${ASCEND_DRIVER_PATH}) | |||
| find_library(slog libslog.so ${ASCEND_DRIVER_PATH}) | |||
| find_library(mmpa libmmpa.so ${ASCEND_DRIVER_PATH}) | |||
| @@ -76,9 +77,11 @@ string(REPLACE " -Werror" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") | |||
| # force __FILE__ to show relative path of file, from source directory | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D__FILE__='\"$(subst $(realpath ${CMAKE_SOURCE_DIR})/,,$(abspath $<))\"' -Wno-builtin-macro-redefined") | |||
| add_subdirectory(${GE_SOURCE_DIR}/src/common/graph) | |||
| if(ENABLE_D) | |||
| if (ENABLE_ACL OR ENABLE_D) | |||
| add_subdirectory(${GE_SOURCE_DIR}/src/ge/common) | |||
| add_subdirectory(${GE_SOURCE_DIR}/src/ge/ge_runtime) | |||
| endif() | |||
| if (ENABLE_D) | |||
| add_subdirectory(${GE_SOURCE_DIR}/src/ge/ge_runtime) | |||
| endif () | |||
| endif () | |||
| set(CMAKE_CXX_FLAGS ${_ge_tmp_CMAKE_CXX_FLAGS}) | |||
| @@ -58,13 +58,22 @@ if (ENABLE_GE) | |||
| include_directories(${CMAKE_SOURCE_DIR}/third_party/ge/include) | |||
| include_directories(${CMAKE_SOURCE_DIR}/third_party/ge/include/external) | |||
| include_directories(${CMAKE_SOURCE_DIR}/third_party/ge/include/external/graph) | |||
| elseif(ENABLE_D OR ENABLE_TESTCASES) | |||
| link_directories(${CMAKE_SOURCE_DIR}/third_party/ge/lib) | |||
| elseif(ENABLE_D OR ENABLE_ACL OR ENABLE_TESTCASES) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc/ops) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc/external) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc/external/graph) | |||
| endif() | |||
| if (ENABLE_GE OR ENABLE_D OR ENABLE_ACL OR ENABLE_TESTCASES) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc/external) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/inc/framework) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/third_party/fwkacllib/inc) | |||
| include_directories(${CMAKE_SOURCE_DIR}/graphengine/third_party/fwkacllib/inc/toolchain) | |||
| endif() | |||
| if (ENABLE_MINDDATA) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/icu4c.cmake) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/libtiff.cmake) | |||
| @@ -19,6 +19,7 @@ option(ENABLE_AKG "enable akg" OFF) | |||
| option(ENABLE_DEBUGGER "enable debugger" OFF) | |||
| option(ENABLE_IBVERBS "enable IBVERBS for parameter server" OFF) | |||
| option(ENABLE_PYTHON "Enable python" ON) | |||
| option(ENABLE_ACL "enable acl" OFF) | |||
| if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU") | |||
| if (WIN32) | |||
| @@ -58,6 +58,12 @@ install( | |||
| COMPONENT mindspore | |||
| ) | |||
| install( | |||
| TARGETS mindspore_shared_lib | |||
| LIBRARY DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| install( | |||
| TARGETS mindspore_gvar | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| @@ -194,7 +200,7 @@ if (ENABLE_SERVING OR ENABLE_TESTCASES) | |||
| endif () | |||
| if (NOT ENABLE_GE) | |||
| if (ENABLE_D) | |||
| if (ENABLE_D OR ENABLE_ACL) | |||
| if (DEFINED ENV{ASCEND_CUSTOM_PATH}) | |||
| set(ASCEND_PATH $ENV{ASCEND_CUSTOM_PATH}) | |||
| else () | |||
| @@ -203,19 +209,26 @@ if (NOT ENABLE_GE) | |||
| set(ASCEND_DRIVER_PATH ${ASCEND_PATH}/driver/lib64/common) | |||
| install( | |||
| FILES | |||
| ${CMAKE_BINARY_DIR}/graphengine/src/common/graph/libgraph.so | |||
| ${CMAKE_BINARY_DIR}/graphengine/src/ge/common/libge_common.so | |||
| ${CMAKE_BINARY_DIR}/graphengine/src/ge/ge_runtime/libge_runtime.so | |||
| ${CMAKE_SOURCE_DIR}/build/graphengine/libc_sec.so | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| install( | |||
| TARGETS ms_profile | |||
| FILES ${CMAKE_SOURCE_DIR}/build/graphengine/libc_sec.so | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| if (ENABLE_D) | |||
| install( | |||
| TARGETS ms_profile | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| install( | |||
| FILES | |||
| ${CMAKE_BINARY_DIR}/graphengine/src/common/graph/libgraph.so | |||
| ${CMAKE_BINARY_DIR}/graphengine/src/ge/common/libge_common.so | |||
| ${CMAKE_BINARY_DIR}/graphengine/src/ge/ge_runtime/libge_runtime.so | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| endif () | |||
| elseif (ENABLE_TESTCASES) | |||
| install( | |||
| FILES | |||
| @@ -287,6 +300,13 @@ if (EXISTS ${CMAKE_SOURCE_DIR}/mindspore/dataset) | |||
| ) | |||
| endif () | |||
| ## Public header files | |||
| install( | |||
| DIRECTORY ${CMAKE_SOURCE_DIR}/include | |||
| DESTINATION ${INSTALL_BASE_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| if (ENABLE_SERVING) | |||
| install( | |||
| TARGETS ms_serving | |||
| @@ -308,8 +328,8 @@ if (ENABLE_SERVING) | |||
| ) | |||
| install( | |||
| FILES ${LIBEVENT_LIB_LIST} | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| FILES ${LIBEVENT_LIB_LIST} | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| endif () | |||
| @@ -1 +1 @@ | |||
| Subproject commit 423c0228e8c421f2b095e40d14e9fb3b563f63aa | |||
| Subproject commit 42d217fb8cec74b1c73685b8abe94d5f1520e9fe | |||
| @@ -0,0 +1,113 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INCLUDE_API_CELL_H | |||
| #define MINDSPORE_INCLUDE_API_CELL_H | |||
| #include <string> | |||
| #include <vector> | |||
| #include <map> | |||
| #include <memory> | |||
| #include "include/api/status.h" | |||
| #include "include/api/types.h" | |||
| namespace mindspore { | |||
| namespace api { | |||
| class InputAndOutput; | |||
| using Input = InputAndOutput; | |||
| using Output = InputAndOutput; | |||
| class MS_API CellBase { | |||
| public: | |||
| CellBase() = default; | |||
| virtual ~CellBase() = default; | |||
| virtual std::vector<Output> Construct(const std::vector<Input> &inputs) { return {}; } | |||
| virtual std::shared_ptr<CellBase> Clone() const = 0; | |||
| std::vector<Output> operator()(const std::vector<Input> &inputs) const; | |||
| }; | |||
| template <class T> | |||
| class MS_API Cell : public CellBase { | |||
| public: | |||
| virtual ~Cell() = default; | |||
| std::shared_ptr<CellBase> Clone() const override { | |||
| return std::make_shared<T>(static_cast<const T&>(*this)); | |||
| } | |||
| }; | |||
| class MS_API ParameterCell final : public Cell<ParameterCell> { | |||
| public: | |||
| ParameterCell() = default; | |||
| ~ParameterCell() override = default; | |||
| ParameterCell(const ParameterCell &); | |||
| ParameterCell &operator=(const ParameterCell &); | |||
| ParameterCell(ParameterCell &&); | |||
| ParameterCell &operator=(ParameterCell &&); | |||
| explicit ParameterCell(const Tensor &); | |||
| ParameterCell &operator=(const Tensor &); | |||
| explicit ParameterCell(Tensor &&); | |||
| ParameterCell &operator=(Tensor &&); | |||
| Tensor GetTensor() const { return tensor_; } | |||
| private: | |||
| Tensor tensor_; | |||
| }; | |||
| class MS_API OpCellBase : public CellBase { | |||
| public: | |||
| explicit OpCellBase(const std::string &name) : name_(name) {} | |||
| ~OpCellBase() override = default; | |||
| const std::string &GetOpType() const { return name_; } | |||
| protected: | |||
| std::string name_; | |||
| }; | |||
| template <class T> | |||
| class MS_API OpCell : public OpCellBase, public std::enable_shared_from_this<T> { | |||
| public: | |||
| explicit OpCell(const std::string &name) : OpCellBase(name) {} | |||
| ~OpCell() override = default; | |||
| std::shared_ptr<CellBase> Clone() const override { | |||
| return std::make_shared<T>(static_cast<const T&>(*this)); | |||
| } | |||
| }; | |||
| class MS_API InputAndOutput { | |||
| public: | |||
| InputAndOutput(); | |||
| ~InputAndOutput() = default; | |||
| // no explicit | |||
| InputAndOutput(const Tensor &); // NOLINT(runtime/explicit) | |||
| InputAndOutput(Tensor &&); // NOLINT(runtime/explicit) | |||
| InputAndOutput(const std::shared_ptr<CellBase> &, const std::vector<InputAndOutput> &, int32_t index); | |||
| int32_t GetIndex() const { return index_; } | |||
| void SetIndex(int32_t index) { index_ = index; } | |||
| private: | |||
| std::shared_ptr<CellBase> cell_; | |||
| std::vector<InputAndOutput> prev_; | |||
| int32_t index_; | |||
| }; | |||
| } // namespace api | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_API_CELL_H | |||
| @@ -0,0 +1,58 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INCLUDE_API_MODEL_H | |||
| #define MINDSPORE_INCLUDE_API_MODEL_H | |||
| #include <string> | |||
| #include <vector> | |||
| #include <map> | |||
| #include <memory> | |||
| #include "include/api/status.h" | |||
| #include "include/api/types.h" | |||
| namespace mindspore { | |||
| namespace api { | |||
| class ModelImpl; | |||
| // todo: minddata c++ interface | |||
| class DataSet {}; | |||
| class NetWork {}; | |||
| class MS_API Model { | |||
| public: | |||
| Model(const std::string &device_type, uint32_t device_id); | |||
| Model(NetWork network, const std::string &device_type, uint32_t device_id); | |||
| ~Model(); | |||
| Model(const Model &) = delete; | |||
| void operator=(const Model &) = delete; | |||
| Status LoadModel(const Buffer &model_data, ModelType type, const std::map<std::string, std::string> &options); | |||
| Status LoadModel(const std::string &file_name, ModelType type, const std::map<std::string, std::string> &options); | |||
| Status UnloadModel(); | |||
| Status Train(const DataSet &dataset, std::map<std::string, Buffer> *outputs); | |||
| Status Eval(const DataSet &dataset, std::map<std::string, Buffer> *outputs); | |||
| Status Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs); | |||
| Status Predict(const std::vector<Buffer> &inputs, std::map<std::string, Buffer> *outputs); | |||
| Status GetInputsInfo(std::vector<Tensor> *tensor_list) const; | |||
| Status GetOutputsInfo(std::vector<Tensor> *tensor_list) const; | |||
| private: | |||
| std::shared_ptr<ModelImpl> impl_; | |||
| }; | |||
| } // namespace api | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_API_MODEL_H | |||
| @@ -0,0 +1,50 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INCLUDE_API_OPS_OPS_H | |||
| #define MINDSPORE_INCLUDE_API_OPS_OPS_H | |||
| #include <string> | |||
| #include <vector> | |||
| #include <map> | |||
| #include <memory> | |||
| #include "include/api/status.h" | |||
| #include "include/api/types.h" | |||
| #include "include/api/cell.h" | |||
| namespace mindspore { | |||
| namespace api { | |||
| struct MS_API Conv2D : public OpCell<Conv2D> { | |||
| Conv2D() : OpCell("Conv2D") {} | |||
| ~Conv2D() override = default; | |||
| std::vector<Output> Construct(const std::vector<Input> &inputs) override; | |||
| Conv2D(int out_channel, const std::vector<int> &kernel_size, int mode = 1, const std::string &pad_mode = "valid", | |||
| const std::vector<int> &pad = {0, 0, 0, 0}, const std::vector<int> &stride = {1, 1, 1, 1}, | |||
| const std::vector<int> &dilation = {1, 1, 1, 1}, int group = 1); | |||
| Output operator()(const Input &, const Input &) const; | |||
| int out_channel; | |||
| std::vector<int> kernel_size; | |||
| int mode = 1; | |||
| std::string pad_mode = "valid"; | |||
| std::vector<int> pad = {0, 0, 0, 0}; | |||
| std::vector<int> stride = {1, 1, 1, 1}; | |||
| std::vector<int> dilation = {1, 1, 1, 1}; | |||
| int group = 1; | |||
| }; | |||
| } // namespace api | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_API_OPS_OPS_H | |||
| @@ -0,0 +1,38 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INCLUDE_API_SERIALIZATION_H | |||
| #define MINDSPORE_INCLUDE_API_SERIALIZATION_H | |||
| #include <string> | |||
| #include <vector> | |||
| #include <map> | |||
| #include <memory> | |||
| #include "include/api/status.h" | |||
| #include "include/api/types.h" | |||
| #include "include/api/model.h" | |||
| namespace mindspore { | |||
| namespace api { | |||
| class MS_API Serialization { | |||
| public: | |||
| static Status LoadCheckPoint(const std::string &ckpt_file, std::map<std::string, Buffer> *parameters); | |||
| static Status SetParameters(const std::map<std::string, Buffer> ¶meters, Model *model); | |||
| static Status ExportModel(const Model &model, ModelType model_type, Buffer *model_data); | |||
| static Status ExportModel(const Model &model, ModelType model_type, const std::string &model_file); | |||
| }; | |||
| } // namespace api | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_API_SERIALIZATION_H | |||
| @@ -0,0 +1,53 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INCLUDE_API_STATUS_H | |||
| #define MINDSPORE_INCLUDE_API_STATUS_H | |||
| #include <string> | |||
| namespace mindspore { | |||
| namespace api { | |||
| enum StatusCode { | |||
| SUCCESS = 0, | |||
| FAILED, | |||
| INVALID_INPUTS, | |||
| // insert new status code here | |||
| UNKNOWN = 0xFFFFFFFF | |||
| }; | |||
| class Status { | |||
| public: | |||
| Status() : status_code_(FAILED) {} | |||
| Status(enum StatusCode status_code, const std::string &status_msg = "") // NOLINT(runtime/explicit) | |||
| : status_code_(status_code), status_msg_(status_msg) {} | |||
| ~Status() = default; | |||
| bool IsSuccess() const { return status_code_ == SUCCESS; } | |||
| enum StatusCode StatusCode() const { return status_code_; } | |||
| std::string StatusMessage() const { return status_msg_; } | |||
| bool operator==(const Status &other) const { return status_code_ == other.status_code_; } | |||
| bool operator==(enum StatusCode other_code) const { return status_code_ == other_code; } | |||
| bool operator!=(const Status &other) const { return status_code_ != other.status_code_; } | |||
| bool operator!=(enum StatusCode other_code) const { return status_code_ != other_code; } | |||
| operator bool() const = delete; | |||
| private: | |||
| enum StatusCode status_code_; | |||
| std::string status_msg_; | |||
| }; | |||
| } // namespace api | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_API_STATUS_H | |||
| @@ -0,0 +1,119 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INCLUDE_API_TYPES_H | |||
| #define MINDSPORE_INCLUDE_API_TYPES_H | |||
| #include <string> | |||
| #include <vector> | |||
| #include <memory> | |||
| #define MS_API __attribute__((visibility("default"))) | |||
| namespace mindspore { | |||
| namespace api { | |||
| enum ModelType { | |||
| kMindIR = 0, | |||
| kAIR = 1, | |||
| kOM = 2, | |||
| kONNX = 3, | |||
| // insert new data type here | |||
| kUnknownType = 0xFFFFFFFF | |||
| }; | |||
| enum DataType { | |||
| kMsUnknown = 0, | |||
| kMsBool = 1, | |||
| kMsInt8 = 2, | |||
| kMsInt16 = 3, | |||
| kMsInt32 = 4, | |||
| kMsInt64 = 5, | |||
| kMsUint8 = 6, | |||
| kMsUint16 = 7, | |||
| kMsUint32 = 8, | |||
| kMsUint64 = 9, | |||
| kMsFloat16 = 10, | |||
| kMsFloat32 = 11, | |||
| kMsFloat64 = 12, | |||
| // insert new data type here | |||
| kInvalidDataType = 0xFFFFFFFF | |||
| }; | |||
| class MS_API Tensor { | |||
| public: | |||
| Tensor(); | |||
| Tensor(const std::string &name, DataType type, const std::vector<int64_t> &shape, const void *data, size_t data_len); | |||
| ~Tensor(); | |||
| const std::string &Name() const; | |||
| void SetName(const std::string &name); | |||
| api::DataType DataType() const; | |||
| void SetDataType(api::DataType type); | |||
| const std::vector<int64_t> &Shape() const; | |||
| void SetShape(const std::vector<int64_t> &shape); | |||
| const void *Data() const; | |||
| void *MutableData(); | |||
| size_t DataSize() const; | |||
| bool ResizeData(size_t data_len); | |||
| bool SetData(const void *data, size_t data_len); | |||
| int64_t ElementNum() const; | |||
| static int GetTypeSize(api::DataType type); | |||
| Tensor Clone() const; | |||
| private: | |||
| class Impl; | |||
| std::shared_ptr<Impl> impl_; | |||
| }; | |||
| class MS_API Buffer { | |||
| public: | |||
| Buffer(); | |||
| Buffer(const void *data, size_t data_len); | |||
| ~Buffer(); | |||
| const void *Data() const; | |||
| void *MutableData(); | |||
| size_t DataSize() const; | |||
| bool ResizeData(size_t data_len); | |||
| bool SetData(const void *data, size_t data_len); | |||
| Buffer Clone() const; | |||
| private: | |||
| class Impl; | |||
| std::shared_ptr<Impl> impl_; | |||
| }; | |||
| constexpr auto kModelOptionDumpCfgPath = "mindspore.option.dump_config_file_path"; | |||
| constexpr auto kModelOptionDvppCfgPath = "mindspore.option.dvpp_config_file_path"; | |||
| constexpr auto kModelOptionInsertOpCfgPath = "mindspore.option.insert_op_config_file_path"; // aipp config file | |||
| constexpr auto kModelOptionInputFormat = "mindspore.option.input_format"; // nchw or nhwc | |||
| // Mandatory while dynamic batch: e.g. "input_op_name1: n1,c2,h3,w4;input_op_name2: n4,c3,h2,w1" | |||
| constexpr auto kModelOptionInputShape = "mindspore.option.input_shape"; | |||
| constexpr auto kModelOptionDynamicBatchSize = "mindspore.option.dynamic_batch_size"; | |||
| constexpr auto kModelOptionDynamicImageSize = "mindspore.option.dynamic_image_size"; | |||
| constexpr auto kModelOptionDynamicDims = "mindspore.option.dynamic_dims"; | |||
| constexpr auto kModelOptionSerialInput = "mindspore.option.serial_inputs_name"; // separated by ';' | |||
| constexpr auto kModelOptionOutputNode = "mindspore.option.output_node"; // e.g. "node_name1:0;node_name2:1" | |||
| constexpr auto kModelOptionOutputType = "mindspore.option.output_type"; // "FP32", "UINT8" or "FP16", default as "FP32" | |||
| } // namespace api | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_API_TYPES_H | |||
| @@ -295,6 +295,9 @@ else () | |||
| target_link_libraries(mindspore ibverbs rdmacm) | |||
| endif() | |||
| endif() | |||
| if (ENABLE_ACL) | |||
| target_link_libraries(_c_expression PRIVATE graph) | |||
| endif () | |||
| target_link_libraries(_c_expression PRIVATE -Wl,--whole-archive mindspore proto_input -Wl,--no-whole-archive) | |||
| target_link_libraries(_c_expression PRIVATE mindspore::pybind11_module) | |||
| target_link_libraries(_c_expression PRIVATE mindspore_gvar) | |||
| @@ -359,3 +362,5 @@ if (CMAKE_SYSTEM_NAME MATCHES "Linux") | |||
| elseif (CMAKE_SYSTEM_NAME MATCHES "Darwin") | |||
| set_target_properties(inference PROPERTIES MACOSX_RPATH ON) | |||
| endif () | |||
| add_subdirectory(cxx_api) | |||
| @@ -0,0 +1,62 @@ | |||
| # build mindspore_shared_lib | |||
| set(LOAD_ONNX_SRC | |||
| ${CMAKE_SOURCE_DIR}/mindspore/ccsrc/utils/load_onnx/anf_converter.cc | |||
| ${CMAKE_SOURCE_DIR}/mindspore/ccsrc/utils/load_onnx/anf_model_parser.cc | |||
| ) | |||
| file(GLOB_RECURSE API_OPS_SRC ${CMAKE_CURRENT_SOURCE_DIR} "ops/*.cc") | |||
| if (ENABLE_ACL) | |||
| file(GLOB_RECURSE API_ACL_SRC ${CMAKE_CURRENT_SOURCE_DIR} "model/acl/*.cc") | |||
| endif () | |||
| set(MSLIB_SRC ${CMAKE_CURRENT_SOURCE_DIR}/types.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/cell.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/serialization.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/model/model.cc | |||
| ${API_ACL_SRC} | |||
| ${API_OPS_SRC} | |||
| ${LOAD_ONNX_SRC}) | |||
| add_library(mindspore_shared_lib SHARED ${MSLIB_SRC}) | |||
| set_target_properties(mindspore_shared_lib PROPERTIES OUTPUT_NAME mindspore PUBLIC_HEADER "${API_INCLUDE}") | |||
| target_link_libraries(mindspore_shared_lib PRIVATE ${PYTHON_LIBRARIES} ${SECUREC_LIBRARY} | |||
| -Wl,--whole-archive mindspore -Wl,--no-whole-archive mindspore_gvar mindspore::protobuf) | |||
| if (ENABLE_CPU) | |||
| target_link_libraries(mindspore_shared_lib PRIVATE mindspore::dnnl mindspore::mkldnn) | |||
| endif () | |||
| if (USE_GLOG) | |||
| target_link_libraries(mindspore_shared_lib PRIVATE mindspore::glog) | |||
| endif () | |||
| if (CMAKE_SYSTEM_NAME MATCHES "Linux") | |||
| target_link_options(mindspore_shared_lib PRIVATE -Wl,-init,common_log_init) | |||
| endif () | |||
| if (ENABLE_ACL) | |||
| if (DEFINED ENV{ASCEND_CUSTOM_PATH}) | |||
| set(ASCEND_PATH $ENV{ASCEND_CUSTOM_PATH}) | |||
| else () | |||
| set(ASCEND_PATH /usr/local/Ascend) | |||
| endif () | |||
| set(ACL_LIB_DIR ${ASCEND_PATH}/acllib/) | |||
| set(ATLAS_ACL_LIB_DIR ${ASCEND_PATH}/ascend-toolkit/latest/acllib) | |||
| set(ATC_DIR ${ASCEND_PATH}/atc/) | |||
| set(ATLAS_ATC_DIR ${ASCEND_PATH}/ascend-toolkit/latest/atc) | |||
| MESSAGE("acl lib dir " ${ACL_LIB_DIR} ", atc dir " ${ATC_DIR}) | |||
| MESSAGE("atlas acl lib dir " ${ATLAS_ACL_LIB_DIR} ", atc dir " ${ATLAS_ATC_DIR}) | |||
| include_directories(${ACL_LIB_DIR}/include/) | |||
| include_directories(${ATLAS_ACL_LIB_DIR}/include/) | |||
| add_compile_definitions(ENABLE_DVPP_INTERFACE) | |||
| find_library(acl libascendcl.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_retr libacl_retr.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_cblas libacl_cblas.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_dvpp libacl_dvpp.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_runtime libruntime.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(ge_compiler libge_compiler.so ${ATC_DIR}/lib64 ${ATLAS_ATC_DIR}/lib64) | |||
| target_link_libraries(mindspore_shared_lib PRIVATE ${acl} ${acl_retr} ${acl_cblas} ${acl_dvpp} ${acl_runtime} | |||
| ${ge_compiler} mindspore::jpeg_turbo) | |||
| endif () | |||
| @@ -0,0 +1,63 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "include/api/cell.h" | |||
| namespace mindspore::api { | |||
| std::vector<Output> CellBase::operator()(const std::vector<Input> &inputs) const { return Clone()->Construct(inputs); } | |||
| ParameterCell::ParameterCell(const ParameterCell &cell) : tensor_(cell.tensor_.Clone()) {} | |||
| ParameterCell &ParameterCell::operator=(const ParameterCell &cell) { | |||
| if (&cell == this) { | |||
| return *this; | |||
| } | |||
| tensor_ = cell.tensor_.Clone(); | |||
| return *this; | |||
| } | |||
| ParameterCell::ParameterCell(ParameterCell &&cell) : tensor_(cell.tensor_) {} | |||
| ParameterCell &ParameterCell::operator=(ParameterCell &&cell) { | |||
| if (&cell == this) { | |||
| return *this; | |||
| } | |||
| tensor_ = cell.tensor_; | |||
| return *this; | |||
| } | |||
| ParameterCell::ParameterCell(const Tensor &tensor) : tensor_(tensor.Clone()) {} | |||
| ParameterCell &ParameterCell::operator=(const Tensor &tensor) { | |||
| tensor_ = tensor.Clone(); | |||
| return *this; | |||
| } | |||
| ParameterCell::ParameterCell(Tensor &&tensor) : tensor_(tensor) {} | |||
| ParameterCell &ParameterCell::operator=(Tensor &&tensor) { | |||
| tensor_ = tensor; | |||
| return *this; | |||
| } | |||
| InputAndOutput::InputAndOutput() : cell_(nullptr), prev_(), index_(-1) {} | |||
| InputAndOutput::InputAndOutput(const Tensor &tensor) | |||
| : cell_(std::make_shared<ParameterCell>(tensor.Clone())), prev_(), index_(-1) {} | |||
| InputAndOutput::InputAndOutput(Tensor &&tensor) : cell_(std::make_shared<ParameterCell>(tensor)), prev_(), index_(-1) {} | |||
| InputAndOutput::InputAndOutput(const std::shared_ptr<CellBase> &cell, const std::vector<InputAndOutput> &prev, | |||
| int32_t index) | |||
| : cell_(cell), prev_(prev), index_(index) {} | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,284 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "cxx_api/model/acl/acl_model.h" | |||
| #include <memory> | |||
| #include "utils/context/context_extends.h" | |||
| namespace mindspore::api { | |||
| std::weak_ptr<AclModel::AclEnvGuard> AclModel::global_acl_env_; | |||
| std::mutex AclModel::global_acl_env_mutex_; | |||
| Status AclModel::InitEnv() { | |||
| if (init_flag_) { | |||
| return SUCCESS; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(options_); | |||
| aclError ret; | |||
| { | |||
| std::lock_guard<std::mutex> lock(global_acl_env_mutex_); | |||
| acl_env_ = global_acl_env_.lock(); | |||
| if (acl_env_ != nullptr) { | |||
| if (options_->dump_cfg_path.empty()) { | |||
| MS_LOG(INFO) << "Acl has been initialized, skip."; | |||
| } else { | |||
| MS_LOG(WARNING) << "Acl has been initialized, skip, so dump config will be ignored."; | |||
| } | |||
| } else { | |||
| acl_env_ = std::make_shared<AclEnvGuard>(options_->dump_cfg_path); | |||
| if (acl_env_->GetErrno() != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Execute aclInit Failed"; | |||
| return FAILED; | |||
| } | |||
| global_acl_env_ = acl_env_; | |||
| MS_LOG(INFO) << "Acl init success"; | |||
| } | |||
| } | |||
| ret = aclrtSetDevice(device_id_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Acl open device " << device_id_ << " failed"; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "Open device " << device_id_ << " success"; | |||
| ret = aclrtCreateContext(&context_, device_id_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Acl create context failed"; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "Create context success"; | |||
| ret = aclrtSetCurrentContext(context_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Acl set current context failed"; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "Set context success"; | |||
| ret = aclrtCreateStream(&stream_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Acl create stream failed"; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "Create stream success"; | |||
| aclrtRunMode run_mode; | |||
| ret = aclrtGetRunMode(&run_mode); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Acl get run mode failed"; | |||
| return FAILED; | |||
| } | |||
| bool is_device = (run_mode == ACL_DEVICE); | |||
| model_process_.SetIsDevice(is_device); | |||
| MS_LOG(INFO) << "Get run mode success is device input/output " << is_device; | |||
| if (dvpp_process_.InitResource(stream_) != SUCCESS) { | |||
| MS_LOG(ERROR) << "DVPP init resource failed"; | |||
| return FAILED; | |||
| } | |||
| ModelConverter::RegAllOp(); | |||
| MS_LOG(INFO) << "Init acl success, device id " << device_id_; | |||
| init_flag_ = true; | |||
| return SUCCESS; | |||
| } | |||
| Status AclModel::FinalizeEnv() { | |||
| if (!init_flag_) { | |||
| return SUCCESS; | |||
| } | |||
| dvpp_process_.Finalize(); | |||
| aclError ret; | |||
| if (stream_ != nullptr) { | |||
| ret = aclrtDestroyStream(stream_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Destroy stream failed"; | |||
| } | |||
| stream_ = nullptr; | |||
| } | |||
| MS_LOG(INFO) << "End to destroy stream"; | |||
| if (context_ != nullptr) { | |||
| ret = aclrtDestroyContext(context_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Destroy context failed"; | |||
| } | |||
| context_ = nullptr; | |||
| } | |||
| MS_LOG(INFO) << "End to destroy context"; | |||
| ret = aclrtResetDevice(device_id_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Reset devie " << device_id_ << " failed"; | |||
| } | |||
| MS_LOG(INFO) << "End to reset device " << device_id_; | |||
| init_flag_ = false; | |||
| return SUCCESS; | |||
| } | |||
| Status AclModel::LoadModel(const Buffer &model_data, ModelType type, | |||
| const std::map<std::string, std::string> &options) { | |||
| if (load_flag_) { | |||
| MS_LOG(ERROR) << "Model has been loaded."; | |||
| return FAILED; | |||
| } | |||
| options_ = std::make_unique<AclModelOptions>(options); | |||
| MS_EXCEPTION_IF_NULL(options_); | |||
| Status ret = InitEnv(); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "InitEnv failed."; | |||
| return FAILED; | |||
| } | |||
| Buffer om_data; | |||
| if (type == ModelType::kMindIR) { | |||
| model_converter_.set_options(options_.get()); | |||
| om_data = model_converter_.LoadMindIR(model_data); | |||
| } else if (type == ModelType::kAIR) { | |||
| model_converter_.set_options(options_.get()); | |||
| om_data = model_converter_.LoadAscendIR(model_data); | |||
| } else if (type == ModelType::kOM) { | |||
| om_data = model_data; | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported model type " << type; | |||
| return FAILED; | |||
| } | |||
| // acl load model | |||
| uint32_t acl_model_id; | |||
| auto acl_ret = aclmdlLoadFromMem(om_data.Data(), om_data.DataSize(), &acl_model_id); | |||
| if (acl_ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Call aclmdlLoadFromMem failed."; | |||
| return FAILED; | |||
| } | |||
| // acl init model resource | |||
| model_process_.set_model_id(acl_model_id); | |||
| ret = model_process_.PreInitModelResource(); | |||
| if (ret != SUCCESS) { | |||
| (void)aclmdlUnload(acl_model_id); | |||
| MS_LOG(ERROR) << "Pre init model resource failed."; | |||
| return FAILED; | |||
| } | |||
| // acl init dvpp | |||
| ret = dvpp_process_.InitWithJsonConfig(options_->dvpp_cfg_path); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "DVPP config file parse error."; | |||
| return FAILED; | |||
| } | |||
| load_flag_ = true; | |||
| return SUCCESS; | |||
| } | |||
| Status AclModel::LoadModel(const std::string &file_name, ModelType type, | |||
| const std::map<std::string, std::string> &options) { | |||
| Buffer model_data = ModelConverter::ReadFile(file_name); | |||
| if (model_data.DataSize() == 0) { | |||
| MS_LOG(ERROR) << "Read file " << file_name << " failed."; | |||
| return FAILED; | |||
| } | |||
| return LoadModel(model_data, type, options); | |||
| } | |||
| Status AclModel::UnloadModel() { | |||
| if (!load_flag_) { | |||
| MS_LOG(WARNING) << "No model is loaded, skip unload."; | |||
| return SUCCESS; | |||
| } | |||
| aclError rt_ret = aclrtSetCurrentContext(context_); | |||
| if (rt_ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Set the ascend device context failed"; | |||
| return FAILED; | |||
| } | |||
| Status ret = model_process_.UnLoad(); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "Unload model inner failed."; | |||
| return FAILED; | |||
| } | |||
| ret = FinalizeEnv(); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "FinalizeEnv failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "Unload model success."; | |||
| load_flag_ = false; | |||
| return SUCCESS; | |||
| } | |||
| Status AclModel::Train(const DataSet &, std::map<std::string, Buffer> *) { | |||
| MS_LOG(ERROR) << "Unsupported feature."; | |||
| return FAILED; | |||
| } | |||
| Status AclModel::Eval(const DataSet &, std::map<std::string, Buffer> *) { | |||
| MS_LOG(ERROR) << "Unsupported feature."; | |||
| return FAILED; | |||
| } | |||
| Status AclModel::Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs) { | |||
| MS_EXCEPTION_IF_NULL(outputs); | |||
| if (!load_flag_) { | |||
| MS_LOG(ERROR) << "No model is loaded, predict failed."; | |||
| return FAILED; | |||
| } | |||
| aclError rt_ret = aclrtSetCurrentContext(context_); | |||
| if (rt_ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Set the ascend device context failed"; | |||
| return FAILED; | |||
| } | |||
| return model_process_.Predict(inputs, outputs); | |||
| } | |||
| Status AclModel::GetInputsInfo(std::vector<Tensor> *tensor_list) const { | |||
| MS_EXCEPTION_IF_NULL(tensor_list); | |||
| return model_process_.GetInputsInfo(tensor_list); | |||
| } | |||
| Status AclModel::GetOutputsInfo(std::vector<Tensor> *tensor_list) const { | |||
| MS_EXCEPTION_IF_NULL(tensor_list); | |||
| return model_process_.GetOutputsInfo(tensor_list); | |||
| } | |||
| AclModel::AclEnvGuard::AclEnvGuard(const std::string &cfg_file) { | |||
| errno_ = aclInit(common::SafeCStr(cfg_file)); | |||
| if (errno_ != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Execute aclInit Failed"; | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "Acl init success"; | |||
| } | |||
| AclModel::AclEnvGuard::~AclEnvGuard() { | |||
| errno_ = aclFinalize(); | |||
| if (errno_ != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Finalize acl failed"; | |||
| } | |||
| MS_LOG(INFO) << "Acl finalize success"; | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,99 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_CXX_API_ACL_MODEL_H | |||
| #define MINDSPORE_CCSRC_CXX_API_ACL_MODEL_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include <unordered_map> | |||
| #include <utility> | |||
| #include <memory> | |||
| #include <map> | |||
| #include "ir/anf.h" | |||
| #include "include/api/status.h" | |||
| #include "cxx_api/model/model_impl.h" | |||
| #include "cxx_api/model/acl/dvpp_process.h" | |||
| #include "cxx_api/model/acl/model_process.h" | |||
| #include "cxx_api/model/acl/model_converter.h" | |||
| #include "cxx_api/model/acl/acl_model_options.h" | |||
| #include "ir/tensor.h" | |||
| namespace mindspore::api { | |||
| class AclModel : public ModelImpl { | |||
| public: | |||
| explicit AclModel(uint32_t device_id) | |||
| : init_flag_(false), | |||
| load_flag_(false), | |||
| device_type_("AscendCL"), | |||
| device_id_(device_id), | |||
| context_(nullptr), | |||
| stream_(nullptr), | |||
| acl_env_(nullptr), | |||
| model_process_(), | |||
| dvpp_process_(), | |||
| model_converter_(), | |||
| options_(nullptr) {} | |||
| ~AclModel() = default; | |||
| Status LoadModel(const Buffer &model_data, ModelType type, | |||
| const std::map<std::string, std::string> &options) override; | |||
| Status LoadModel(const std::string &file_name, ModelType type, | |||
| const std::map<std::string, std::string> &options) override; | |||
| Status UnloadModel() override; | |||
| Status Train(const DataSet &dataset, std::map<std::string, Buffer> *outputs) override; | |||
| Status Eval(const DataSet &dataset, std::map<std::string, Buffer> *outputs) override; | |||
| Status Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs) override; | |||
| Status GetInputsInfo(std::vector<Tensor> *tensor_list) const override; | |||
| Status GetOutputsInfo(std::vector<Tensor> *tensor_list) const override; | |||
| private: | |||
| bool init_flag_; | |||
| bool load_flag_; | |||
| std::string device_type_; | |||
| int32_t device_id_; | |||
| aclrtContext context_; | |||
| aclrtStream stream_; | |||
| class AclEnvGuard; | |||
| std::shared_ptr<AclEnvGuard> acl_env_; | |||
| static std::weak_ptr<AclEnvGuard> global_acl_env_; | |||
| static std::mutex global_acl_env_mutex_; | |||
| ModelProcess model_process_; | |||
| DvppProcess dvpp_process_; | |||
| ModelConverter model_converter_; | |||
| std::unique_ptr<AclModelOptions> options_; | |||
| Status InitEnv(); | |||
| Status FinalizeEnv(); | |||
| }; | |||
| class AclModel::AclEnvGuard { | |||
| public: | |||
| explicit AclEnvGuard(const std::string &cfg_file); | |||
| ~AclEnvGuard(); | |||
| aclError GetErrno() const { return errno_; } | |||
| private: | |||
| aclError errno_; | |||
| }; | |||
| API_REG_MODEL(AscendCL, AclModel); | |||
| } // namespace mindspore::api | |||
| #endif // MINDSPORE_CCSRC_CXX_API_ACL_MODEL_H | |||
| @@ -0,0 +1,66 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "cxx_api/model/acl/acl_model_options.h" | |||
| #include <memory> | |||
| #include "external/ge/ge_api_types.h" | |||
| namespace mindspore::api { | |||
| static std::string ParseOption(const std::map<std::string, std::string> &options, const std::string &key) { | |||
| auto iter = options.find(key); | |||
| if (iter != options.end()) { | |||
| return iter->second; | |||
| } | |||
| return ""; | |||
| } | |||
| AclModelOptions::AclModelOptions(const std::map<std::string, std::string> &options) { | |||
| dump_cfg_path = ParseOption(options, kModelOptionDumpCfgPath); | |||
| dvpp_cfg_path = ParseOption(options, kModelOptionDvppCfgPath); | |||
| output_node = ParseOption(options, kModelOptionOutputNode); | |||
| // to acl | |||
| insert_op_cfg_path = ParseOption(options, kModelOptionInsertOpCfgPath); | |||
| input_format = ParseOption(options, kModelOptionInputFormat); | |||
| input_shape = ParseOption(options, kModelOptionInputShape); | |||
| dynamic_batch_size = ParseOption(options, kModelOptionInputShape); | |||
| dynamic_image_size = ParseOption(options, kModelOptionInputShape); | |||
| dynamic_dims = ParseOption(options, kModelOptionInputShape); | |||
| serial_nodes_name = ParseOption(options, kModelOptionSerialInput); | |||
| output_type = ParseOption(options, kModelOptionOutputType); | |||
| } | |||
| std::map<std::string, std::string> AclModelOptions::GenAclOptions() const { | |||
| const std::map<std::string const *, std::string> acl_options_map = { | |||
| {&insert_op_cfg_path, ge::ir_option::INSERT_OP_FILE}, | |||
| {&input_format, ge::ir_option::INPUT_FORMAT}, | |||
| {&input_shape, ge::ir_option::INPUT_SHAPE}, | |||
| {&dynamic_batch_size, ge::ir_option::DYNAMIC_BATCH_SIZE}, | |||
| {&dynamic_image_size, ge::ir_option::DYNAMIC_IMAGE_SIZE}, | |||
| {&dynamic_dims, ge::ir_option::DYNAMIC_DIMS}, | |||
| {&serial_nodes_name, ge::ir_option::INPUT_FP16_NODES}, | |||
| {&output_type, ge::ir_option::OUTPUT_TYPE}, | |||
| }; | |||
| std::map<std::string, std::string> acl_options; | |||
| for (auto [ms_option, acl_option_key] : acl_options_map) { | |||
| if (ms_option == nullptr || ms_option->empty()) { | |||
| continue; | |||
| } | |||
| acl_options.emplace(acl_option_key, *ms_option); | |||
| } | |||
| return acl_options; | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,47 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_OPTION_PARSER_H | |||
| #define MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_OPTION_PARSER_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include <map> | |||
| #include "include/api/types.h" | |||
| #include "include/api/status.h" | |||
| namespace mindspore::api { | |||
| struct AclModelOptions { | |||
| std::string dump_cfg_path; | |||
| std::string dvpp_cfg_path; | |||
| std::string output_node; // todo: at convert.cc::BuildGraph(), no atc options | |||
| // build options | |||
| std::string insert_op_cfg_path; | |||
| std::string input_format; | |||
| std::string input_shape; | |||
| std::string dynamic_batch_size; | |||
| std::string dynamic_image_size; | |||
| std::string dynamic_dims; | |||
| std::string serial_nodes_name; | |||
| std::string output_type; | |||
| explicit AclModelOptions(const std::map<std::string, std::string> &options); | |||
| ~AclModelOptions() = default; | |||
| std::map<std::string, std::string> GenAclOptions() const; | |||
| }; | |||
| } // namespace mindspore::api | |||
| #endif // MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_OPTION_PARSER_H | |||
| @@ -0,0 +1,160 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_DVPP_PROCESS_H | |||
| #define MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_DVPP_PROCESS_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include <map> | |||
| #include "acl/acl.h" | |||
| #include "acl/acl_mdl.h" | |||
| #include "acl/acl_rt.h" | |||
| #include "acl/ops/acl_dvpp.h" | |||
| #include "include/api/status.h" | |||
| namespace mindspore::api { | |||
| struct DvppDecodePara { | |||
| acldvppPixelFormat pixel_format = PIXEL_FORMAT_YUV_SEMIPLANAR_420; | |||
| }; | |||
| struct DvppResizePara { | |||
| uint32_t output_width = 0; | |||
| uint32_t output_height = 0; | |||
| }; | |||
| enum DvppCropType { | |||
| // crop left,top,right,bottom is given in config | |||
| kDvppCropTypeOffset = 0, | |||
| // crop left,top,right,bottom is calculated by image width/height and output crop width/height | |||
| kDvppCropTypeCentre = 1, | |||
| }; | |||
| struct DvppRoiArea { | |||
| uint32_t left = 0; | |||
| uint32_t top = 0; | |||
| uint32_t right = 0; | |||
| uint32_t bottom = 0; | |||
| }; | |||
| struct DvppCropInfo { | |||
| DvppCropType crop_type = kDvppCropTypeOffset; | |||
| DvppRoiArea crop_area; // when kDvppCropTypeOffset | |||
| uint32_t crop_width = 0; // when kDvppCropTypeCentre | |||
| uint32_t crop_height = 0; // when kDvppCropTypeCentre | |||
| }; | |||
| struct DvppCropPara { | |||
| DvppCropInfo crop_info; | |||
| uint32_t output_width = 0; | |||
| uint32_t output_height = 0; | |||
| }; | |||
| struct DvppCropAndPastePara { | |||
| DvppCropInfo crop_info; | |||
| DvppRoiArea paste_area; | |||
| uint32_t output_width = 0; | |||
| uint32_t output_height = 0; | |||
| }; | |||
| class DvppProcess { | |||
| public: | |||
| DvppProcess(); | |||
| ~DvppProcess(); | |||
| Status InitResource(aclrtStream stream); | |||
| void Finalize(); | |||
| Status InitJpegDecodePara(const DvppDecodePara &decode_para); // jpeg decode + (resize | crop) | |||
| Status InitResizePara(const DvppResizePara &resize_para); // jpeg decode + resize | |||
| Status InitCropPara(const DvppCropPara &crop_para); // jpeg decode + crop | |||
| Status InitCropAndPastePara(const DvppCropAndPastePara &crop_and_paste_para); // jpeg decode + crop&paste | |||
| Status InitWithJsonConfig(const std::string &json_config); | |||
| // output device buffer will be destroy by DvppProcess itself. | |||
| Status Process(const void *pic_buffer, size_t pic_buffer_size, void **output_device_buffer, size_t *output_size); | |||
| Status Process(const std::vector<const void *> &pic_buffer_list, const std::vector<size_t> &pic_buffer_size_list, | |||
| void **output_device_buffer, size_t *output_size); | |||
| bool HasLoaded() const { return loaded_flag_; } | |||
| private: | |||
| bool loaded_flag_ = false; | |||
| uint32_t pic_width_ = 0; | |||
| uint32_t pic_height_ = 0; | |||
| DvppDecodePara decode_para_; | |||
| DvppResizePara resize_para_; | |||
| DvppCropPara crop_para_; | |||
| DvppCropAndPastePara crop_and_paste_para_; | |||
| // only one of the resize or crop flag can be true | |||
| bool to_resize_flag_ = false; | |||
| bool to_crop_flag_ = false; | |||
| bool to_crop_and_paste_flag_ = false; | |||
| void *input_pic_dev_buffer_ = nullptr; | |||
| uint32_t input_pic_buffer_size_ = 0; | |||
| uint32_t decode_output_buffer_size_ = 0; | |||
| void *decode_output_buffer_dev_ = nullptr; | |||
| acldvppPicDesc *decode_output_desc_ = nullptr; | |||
| acldvppResizeConfig *resize_config_ = nullptr; | |||
| acldvppRoiConfig *crop_area_ = nullptr; | |||
| acldvppRoiConfig *paste_area_ = nullptr; | |||
| acldvppPicDesc *vpc_output_desc_ = nullptr; | |||
| void *vpc_output_buffer_dev_ = nullptr; // vpc_output_buffer_size_ length | |||
| uint32_t vpc_output_buffer_size_ = 0; | |||
| void *batch_vpc_output_buffer_dev_ = nullptr; // batch_size_ * vpc_output_buffer_size_ length | |||
| uint32_t batch_size_ = 0; | |||
| aclrtStream stream_ = nullptr; | |||
| acldvppChannelDesc *dvpp_channel_desc_ = nullptr; | |||
| uint32_t AlignmentHelper(uint32_t org_size, uint32_t alignment) const; | |||
| uint32_t GetImageBufferSize(uint32_t stride_width, uint32_t stride_height, acldvppPixelFormat pixel_format) const; | |||
| Status GetPicDescStride(uint32_t width, uint32_t height, uint32_t *stride_width, uint32_t *stride_height); | |||
| Status GetPicDescStrideDecode(uint32_t width, uint32_t height, uint32_t *stride_width, uint32_t *stride_height); | |||
| Status InputInputBuffer(const void *pic_buffer, size_t pic_buffer_size); | |||
| Status InitDecodeOutputDesc(uint32_t image_width, | |||
| uint32_t image_height); // decode_output_desc_, decode_output_buffer_dev_ | |||
| Status CheckRoiAreaWidthHeight(uint32_t width, uint32_t height); | |||
| Status CheckAndAdjustRoiArea(DvppRoiArea *area); | |||
| Status UpdateCropArea(uint32_t image_width, uint32_t image_height); | |||
| Status CheckResizeImageInfo(uint32_t image_width, uint32_t image_height) const; | |||
| void DestroyDecodeDesc(); | |||
| Status InitVpcOutputDesc(uint32_t output_width, uint32_t output_height, | |||
| acldvppPixelFormat pixel_format); // vpc_output_desc_, vpc_output_buffer_dev_batch_ | |||
| Status InitRoiAreaConfig(const DvppRoiArea &init_para, acldvppRoiConfig **roi_area); | |||
| Status InitCommonCropPara(uint32_t out_width, uint32_t out_height, DvppCropInfo *crop_info); | |||
| Status InitResizeOutputDesc(); // vpc_output_desc_, vpc_output_buffer_dev_, resize_config | |||
| Status InitCropOutputDesc(); // vpc_output_desc_, vpc_output_buffer_dev_, crop_area_ | |||
| Status InitCropAndPasteOutputDesc(); // vpc_output_desc_, vpc_output_buffer_dev_, crop_area_, paste_area_ | |||
| void DestroyVpcOutputDesc(); | |||
| Status ProcessDecode(); | |||
| Status ProcessResize(); | |||
| Status ProcessCrop(); | |||
| Status ProcessCropAndPaste(); | |||
| void DestroyResource(); | |||
| Status GetJpegWidthHeight(const void *pic_buffer, size_t pic_buffer_size, uint32_t *image_width, | |||
| uint32_t *image_height); | |||
| }; | |||
| } // namespace mindspore::api | |||
| #endif // MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_DVPP_PROCESS_H | |||
| @@ -0,0 +1,285 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "cxx_api/model/acl/model_converter.h" | |||
| #include <memory> | |||
| #include "pybind11/pybind11.h" | |||
| #include "utils/load_onnx/anf_converter.h" | |||
| #include "transform/graph_ir/convert.h" | |||
| #include "transform/graph_ir/graph_runner.h" | |||
| #include "mindspore/core/utils/ms_context.h" | |||
| #include "backend/kernel_compiler/oplib/oplib.h" | |||
| #include "graph/model.h" | |||
| namespace py = pybind11; | |||
| namespace mindspore::api { | |||
| namespace { | |||
| transform::TensorOrderMap GetParams(const FuncGraphPtr &anf_graph) { | |||
| transform::TensorOrderMap res; | |||
| for (auto &anf_node : anf_graph->parameters()) { | |||
| MS_EXCEPTION_IF_NULL(anf_node); | |||
| auto para = anf_node->cast<ParameterPtr>(); | |||
| MS_EXCEPTION_IF_NULL(para); | |||
| if (para->has_default()) { | |||
| auto value = para->default_param(); | |||
| MS_EXCEPTION_IF_NULL(value); | |||
| auto tensor = value->cast<std::shared_ptr<tensor::Tensor>>(); | |||
| res.emplace(para->name(), tensor); | |||
| MS_LOG(INFO) << "Parameter " << para->name() << " has default value."; | |||
| } | |||
| } | |||
| return res; | |||
| } | |||
| bool CreateSessionAndGraphRunner() { | |||
| std::shared_ptr<ge::Session> sess = transform::DfGraphManager::GetInstance().GetGeSession(); | |||
| if (sess == nullptr) { | |||
| transform::SessionOptions options; | |||
| options["ge.trainFlag"] = "0"; | |||
| options["ge.enablePrintOpPass"] = "0"; | |||
| sess = transform::GraphRunner::NewSession(options); | |||
| if (sess == nullptr) { | |||
| MS_LOG(ERROR) << "Init data graph failed, because of create Ge session failed"; | |||
| return false; | |||
| } else { | |||
| transform::DfGraphManager::GetInstance().SetGeSession(sess); | |||
| } | |||
| } | |||
| transform::GraphRunnerOptions options; | |||
| options.sess_ptr = sess; | |||
| auto graph_runner = std::make_shared<transform::GraphRunner>(options); | |||
| if (graph_runner == nullptr) { | |||
| MS_LOG(ERROR) << "Create new graph runner failed"; | |||
| return false; | |||
| } else { | |||
| transform::DfGraphManager::GetInstance().SetGraphRunner(graph_runner); | |||
| } | |||
| return true; | |||
| } | |||
| } // namespace | |||
| std::shared_ptr<FuncGraph> ModelConverter::ConvertMindIrToFuncGraph(const Buffer &model_data) { | |||
| try { | |||
| auto anf_graph = | |||
| lite::AnfConverter::RunAnfConverter(reinterpret_cast<const char *>(model_data.Data()), model_data.DataSize()); | |||
| return anf_graph; | |||
| } catch (std::exception &e) { | |||
| MS_LOG(ERROR) << "Load MindIR failed."; | |||
| return nullptr; | |||
| } | |||
| } | |||
| transform::DfGraphPtr ModelConverter::ConvertFuncGraphToAIR(const FuncGraphPtr &anf_graph) { | |||
| for (auto &anf_node : anf_graph->parameters()) { | |||
| MS_EXCEPTION_IF_NULL(anf_node); | |||
| auto para = anf_node->cast<ParameterPtr>(); | |||
| MS_EXCEPTION_IF_NULL(para); | |||
| // normalize name | |||
| std::string name = para->name(); | |||
| for (auto pos = name.find(':'); pos != std::string::npos; pos = name.find(':')) { | |||
| name = name.substr(0, pos) + "_" + name.substr(pos + 1); | |||
| MS_LOG(INFO) << name; | |||
| } | |||
| para->set_name(name); | |||
| } | |||
| transform::DfGraphConvertor convertor(anf_graph); | |||
| std::string net_id = "0"; | |||
| std::string init_graph = "init_subgraph." + net_id; | |||
| std::string checkpoint_name = "save." + net_id; | |||
| convertor.set_training(false); | |||
| (void)convertor.ConvertAllNode().InitParam(GetParams(anf_graph)).BuildGraph(); | |||
| (void)convertor.GenerateCheckpointGraph(); | |||
| if (convertor.ErrCode() != 0) { | |||
| transform::DfGraphManager::GetInstance().ClearGraph(); | |||
| MS_LOG(ERROR) << "Convert df graph failed, err:" << convertor.ErrCode(); | |||
| return nullptr; | |||
| } | |||
| (void)transform::DfGraphManager::GetInstance().AddGraph(anf_graph->ToString(), convertor.GetComputeGraph()); | |||
| (void)transform::DfGraphManager::GetInstance().AddGraph(init_graph, convertor.GetInitGraph()); | |||
| (void)transform::DfGraphManager::GetInstance().AddGraph(BROADCAST_GRAPH_NAME, convertor.GetBroadcastGraph()); | |||
| transform::Status ret = | |||
| transform::DfGraphManager::GetInstance().AddGraph(checkpoint_name, convertor.GetSaveCheckpointGraph()); | |||
| if (ret == transform::Status::SUCCESS) { | |||
| transform::DfGraphManager::GetInstance().SetAnfGraph(checkpoint_name, anf_graph); | |||
| } | |||
| (void)setenv("GE_TRAIN", "0", 1); | |||
| if (!CreateSessionAndGraphRunner()) { | |||
| MS_LOG(ERROR) << "Create GE Session or GraphRunner failed."; | |||
| return nullptr; | |||
| } | |||
| auto wrap_ptr = transform::DfGraphManager::GetInstance().GetGraphByName(anf_graph->ToString()); | |||
| if (wrap_ptr == nullptr) { | |||
| MS_LOG(ERROR) << "Get graph form DfGraphManager failed!"; | |||
| return nullptr; | |||
| } | |||
| transform::DfGraphPtr &ge_graph = wrap_ptr->graph_ptr_; | |||
| if (ge_graph == nullptr) { | |||
| MS_LOG(ERROR) << "The export graph is null"; | |||
| return nullptr; | |||
| } | |||
| return ge_graph; | |||
| } | |||
| Buffer ModelConverter::BuildAirModel(const transform::DfGraphPtr &graph, | |||
| const std::map<std::string, std::string> &acl_options) { | |||
| ge::ModelBufferData model; | |||
| auto ge_options = acl_options; | |||
| ge_options.emplace(ge::ir_option::SOC_VERSION, "Ascend310"); | |||
| auto ret = ge::aclgrphBuildInitialize(ge_options); | |||
| if (ret != ge::SUCCESS) { | |||
| MS_LOG(ERROR) << "Call aclgrphBuildInitialize fail."; | |||
| return Buffer(); | |||
| } | |||
| ret = ge::aclgrphBuildModel(*graph, acl_options, model); | |||
| if (ret != ge::SUCCESS) { | |||
| MS_LOG(ERROR) << "Call aclgrphBuildModel fail."; | |||
| return Buffer(); | |||
| } | |||
| ge::aclgrphBuildFinalize(); | |||
| return Buffer(model.data.get(), model.length); | |||
| } | |||
| void ModelConverter::RegAllOp() { | |||
| static std::mutex init_mutex; | |||
| static bool Initialized = false; | |||
| std::lock_guard<std::mutex> lock(init_mutex); | |||
| if (Initialized) { | |||
| return; | |||
| } | |||
| Initialized = true; | |||
| MsContext::GetInstance()->set_param<int>(MS_CTX_EXECUTION_MODE, kGraphMode); | |||
| Py_Initialize(); | |||
| auto c_expression = PyImport_ImportModule("mindspore._c_expression"); | |||
| MS_EXCEPTION_IF_NULL(c_expression); | |||
| PyObject *c_expression_dict = PyModule_GetDict(c_expression); | |||
| MS_EXCEPTION_IF_NULL(c_expression_dict); | |||
| PyObject *op_info_loader_class = PyDict_GetItemString(c_expression_dict, "OpInfoLoaderPy"); | |||
| MS_EXCEPTION_IF_NULL(op_info_loader_class); | |||
| PyObject *op_info_loader = PyInstanceMethod_New(op_info_loader_class); | |||
| MS_EXCEPTION_IF_NULL(op_info_loader); | |||
| PyObject *op_info_loader_ins = PyObject_CallObject(op_info_loader, nullptr); | |||
| MS_EXCEPTION_IF_NULL(op_info_loader_ins); | |||
| auto all_ops_info_vector_addr_ul = PyObject_CallMethod(op_info_loader_ins, "get_all_ops_info", nullptr); | |||
| MS_EXCEPTION_IF_NULL(all_ops_info_vector_addr_ul); | |||
| auto all_ops_info_vector_addr = PyLong_AsVoidPtr(all_ops_info_vector_addr_ul); | |||
| auto all_ops_info = static_cast<std::vector<kernel::OpInfo *> *>(all_ops_info_vector_addr); | |||
| for (auto op_info : *all_ops_info) { | |||
| kernel::OpLib::RegOpInfo(std::shared_ptr<kernel::OpInfo>(op_info)); | |||
| } | |||
| all_ops_info->clear(); | |||
| delete all_ops_info; | |||
| Py_DECREF(op_info_loader); | |||
| Py_DECREF(op_info_loader_class); | |||
| Py_DECREF(c_expression_dict); | |||
| Py_DECREF(c_expression); | |||
| } | |||
| Buffer ModelConverter::ReadFile(const std::string &file) { | |||
| Buffer buffer; | |||
| if (file.empty()) { | |||
| MS_LOG(ERROR) << "Pointer file is nullptr"; | |||
| return buffer; | |||
| } | |||
| std::string realPath = file; | |||
| std::ifstream ifs(realPath); | |||
| if (!ifs.good()) { | |||
| MS_LOG(ERROR) << "File: " << realPath << " is not exist"; | |||
| return buffer; | |||
| } | |||
| if (!ifs.is_open()) { | |||
| MS_LOG(ERROR) << "File: " << realPath << "open failed"; | |||
| return buffer; | |||
| } | |||
| ifs.seekg(0, std::ios::end); | |||
| size_t size = ifs.tellg(); | |||
| buffer.ResizeData(size); | |||
| if (buffer.DataSize() != size) { | |||
| MS_LOG(ERROR) << "Malloc buf failed, file: " << realPath; | |||
| ifs.close(); | |||
| return buffer; | |||
| } | |||
| ifs.seekg(0, std::ios::beg); | |||
| ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); | |||
| ifs.close(); | |||
| return buffer; | |||
| } | |||
| Buffer ModelConverter::LoadMindIR(const Buffer &model_data) { | |||
| auto func_graph = ConvertMindIrToFuncGraph(model_data); | |||
| if (func_graph == nullptr) { | |||
| MS_LOG(ERROR) << "Convert MindIR to FuncGraph failed."; | |||
| return Buffer(); | |||
| } | |||
| auto df_graph = ConvertFuncGraphToAIR(func_graph); | |||
| if (df_graph == nullptr) { | |||
| MS_LOG(ERROR) << "Convert FuncGraph to AscendIR failed."; | |||
| return Buffer(); | |||
| } | |||
| std::map<std::string, std::string> acl_options; | |||
| if (options_ != nullptr) { | |||
| acl_options = options_->GenAclOptions(); | |||
| } | |||
| auto om_data = BuildAirModel(df_graph, acl_options); | |||
| return om_data; | |||
| } | |||
| Buffer ModelConverter::LoadAscendIR(const Buffer &model_data) { | |||
| ge::Model load_model = ge::Model("loadmodel", "version2"); | |||
| ge::Status ret = | |||
| ge::Model::Load(reinterpret_cast<const uint8_t *>(model_data.Data()), model_data.DataSize(), load_model); | |||
| if (ret != ge::GRAPH_SUCCESS) { | |||
| MS_LOG(ERROR) << "Load AscendIR failed, ret = " << ret; | |||
| return Buffer(); | |||
| } | |||
| transform::DfGraphPtr df_graph = std::make_shared<transform::DfGraph>(load_model.GetGraph()); | |||
| if (df_graph == nullptr) { | |||
| MS_LOG(ERROR) << "Convert FuncGraph to AscendIR failed."; | |||
| return Buffer(); | |||
| } | |||
| std::map<std::string, std::string> acl_options; | |||
| if (options_ != nullptr) { | |||
| acl_options = options_->GenAclOptions(); | |||
| } | |||
| auto om_data = BuildAirModel(df_graph, acl_options); | |||
| return om_data; | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,51 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_MODEL_CONVERTER_H | |||
| #define MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_MODEL_CONVERTER_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include <map> | |||
| #include <memory> | |||
| #include "include/api/types.h" | |||
| #include "include/api/status.h" | |||
| #include "mindspore/core/ir/func_graph.h" | |||
| #include "transform/graph_ir/types.h" | |||
| #include "external/ge/ge_ir_build.h" | |||
| #include "cxx_api/model/acl/acl_model_options.h" | |||
| namespace mindspore::api { | |||
| class ModelConverter { | |||
| public: | |||
| ModelConverter() : options_(nullptr) {} | |||
| Buffer LoadMindIR(const Buffer &model_data); | |||
| Buffer LoadAscendIR(const Buffer &model_data); | |||
| void set_options(AclModelOptions *options) { options_ = options; } | |||
| static Buffer ReadFile(const std::string &file); | |||
| static void RegAllOp(); | |||
| private: | |||
| std::shared_ptr<FuncGraph> ConvertMindIrToFuncGraph(const Buffer &model_data); | |||
| transform::DfGraphPtr ConvertFuncGraphToAIR(const FuncGraphPtr &anf_graph); | |||
| Buffer BuildAirModel(const transform::DfGraphPtr &graph, const std::map<std::string, std::string> &acl_options); | |||
| AclModelOptions *options_; | |||
| }; | |||
| } // namespace mindspore::api | |||
| #endif // MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_MODEL_CONVERTER_H | |||
| @@ -0,0 +1,440 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "cxx_api/model/acl/model_process.h" | |||
| #include <algorithm> | |||
| #include <map> | |||
| #include "utils/utils.h" | |||
| namespace mindspore::api { | |||
| static DataType TransToApiType(aclDataType data_type) { | |||
| static const std::map<aclDataType, api::DataType> data_type_map = { | |||
| {ACL_FLOAT16, api::kMsFloat16}, {ACL_FLOAT, api::kMsFloat32}, {ACL_DOUBLE, api::kMsFloat64}, | |||
| {ACL_INT8, api::kMsInt8}, {ACL_INT16, api::kMsInt16}, {ACL_INT32, api::kMsInt32}, | |||
| {ACL_INT64, api::kMsInt64}, {ACL_UINT8, api::kMsUint8}, {ACL_UINT16, api::kMsUint16}, | |||
| {ACL_UINT32, api::kMsUint32}, {ACL_UINT64, api::kMsUint64}, {ACL_BOOL, api::kMsBool}, | |||
| }; | |||
| auto it = data_type_map.find(data_type); | |||
| if (it == data_type_map.end()) { | |||
| return api::kInvalidDataType; | |||
| } else { | |||
| return it->second; | |||
| } | |||
| } | |||
| static void ConstructTensorDesc(const std::vector<AclTensorInfo> &acl_tensor_list, std::vector<Tensor> *tensor_list) { | |||
| MS_EXCEPTION_IF_NULL(tensor_list); | |||
| tensor_list->clear(); | |||
| for (size_t i = 0; i < acl_tensor_list.size(); ++i) { | |||
| const auto &info = acl_tensor_list[i]; | |||
| Tensor tensor_desc; | |||
| tensor_desc.SetName(info.name); | |||
| tensor_desc.SetDataType(TransToApiType(info.data_type)); | |||
| tensor_desc.SetShape(info.dims); | |||
| tensor_list->push_back(tensor_desc); | |||
| } | |||
| } | |||
| Status ModelProcess::PreInitModelResource() { | |||
| model_desc_ = aclmdlCreateDesc(); | |||
| aclError acl_ret = aclmdlGetDesc(model_desc_, model_id_); | |||
| if (acl_ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Read model desc failed"; | |||
| return FAILED; | |||
| } | |||
| Status ret = InitInputsBuffer(); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "Create input buffer failed"; | |||
| return FAILED; | |||
| } | |||
| ret = InitOutputsBuffer(); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "Create output buffer failed"; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::LoadModelFromFile(const std::string &file_name, uint32_t *model_id) { | |||
| MS_EXCEPTION_IF_NULL(model_id); | |||
| aclError acl_ret = aclmdlLoadFromFile(file_name.c_str(), model_id); | |||
| if (acl_ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Read model file failed, file name is " << file_name; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "Load model success " << file_name; | |||
| model_id_ = *model_id; | |||
| if (PreInitModelResource() != SUCCESS) { | |||
| aclmdlUnload(model_id_); | |||
| MS_LOG(ERROR) << "Pre init model resource failed, file name is " << file_name; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::InitInputsBuffer() { | |||
| aclError ret; | |||
| size_t input_size = aclmdlGetNumInputs(model_desc_); | |||
| MS_LOG(INFO) << "input_size = " << input_size; | |||
| for (size_t i = 0; i < input_size; ++i) { | |||
| auto buffer_size = aclmdlGetInputSizeByIndex(model_desc_, i); | |||
| void *data_mem_buffer = nullptr; | |||
| if (!is_run_on_device_) { // need to copy input/output to/from device | |||
| ret = aclrtMalloc(&data_mem_buffer, buffer_size, ACL_MEM_MALLOC_NORMAL_ONLY); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Malloc device input buffer faild , input size " << buffer_size; | |||
| return FAILED; | |||
| } | |||
| } | |||
| aclmdlIODims dims; | |||
| ret = aclmdlGetInputDims(model_desc_, i, &dims); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Get input shape failed"; | |||
| if (!is_run_on_device_) { | |||
| aclrtFree(data_mem_buffer); | |||
| } | |||
| return FAILED; | |||
| } | |||
| aclDataType data_type = aclmdlGetInputDataType(model_desc_, i); | |||
| std::vector<int64_t> shape(dims.dims, dims.dims + dims.dimCount); | |||
| std::string input_name = aclmdlGetInputNameByIndex(model_desc_, i); | |||
| if (input_name.empty()) { | |||
| MS_LOG(WARNING) << "Get name of input " << i << " failed."; | |||
| } | |||
| MS_LOG(INFO) << "Name of input " << i << " is " << input_name; | |||
| input_infos_.emplace_back(AclTensorInfo{data_mem_buffer, buffer_size, data_type, shape, input_name}); | |||
| } | |||
| MS_LOG(INFO) << "Create model inputs success"; | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::CreateDataBuffer(void **data_mem_buffer, size_t buffer_size, aclmdlDataset *dataset) { | |||
| MS_EXCEPTION_IF_NULL(data_mem_buffer); | |||
| aclError ret; | |||
| auto free_data_buffer = [this](void *dataMemBuffer) { | |||
| if (!is_run_on_device_) { | |||
| aclrtFree(dataMemBuffer); | |||
| } else { | |||
| aclrtFreeHost(dataMemBuffer); | |||
| } | |||
| }; | |||
| if (!is_run_on_device_) { | |||
| ret = aclrtMalloc(data_mem_buffer, buffer_size, ACL_MEM_MALLOC_NORMAL_ONLY); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Malloc device buffer faild , buffer size " << buffer_size; | |||
| return FAILED; | |||
| } | |||
| } else { | |||
| ret = aclrtMallocHost(data_mem_buffer, buffer_size); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Malloc device buffer faild , buffer size " << buffer_size; | |||
| return FAILED; | |||
| } | |||
| } | |||
| auto data_buffer = aclCreateDataBuffer(*data_mem_buffer, buffer_size); | |||
| if (data_buffer == nullptr) { | |||
| MS_LOG(ERROR) << "Create Data Buffer failed"; | |||
| free_data_buffer(*data_mem_buffer); | |||
| return FAILED; | |||
| } | |||
| ret = aclmdlAddDatasetBuffer(dataset, data_buffer); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "add data buffer failed"; | |||
| free_data_buffer(*data_mem_buffer); | |||
| aclDestroyDataBuffer(data_buffer); | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::InitOutputsBuffer() { | |||
| aclError ret; | |||
| outputs_ = aclmdlCreateDataset(); | |||
| if (outputs_ == nullptr) { | |||
| MS_LOG(ERROR) << "Create input dataset failed"; | |||
| return FAILED; | |||
| } | |||
| size_t output_size = aclmdlGetNumOutputs(model_desc_); | |||
| MS_LOG(INFO) << "output_size = " << output_size; | |||
| for (size_t i = 0; i < output_size; ++i) { | |||
| auto buffer_size = aclmdlGetOutputSizeByIndex(model_desc_, i); | |||
| void *data_mem_buffer = nullptr; | |||
| if (CreateDataBuffer(&data_mem_buffer, buffer_size, outputs_) != SUCCESS) { | |||
| MS_LOG(ERROR) << "add output data buffer failed, buffer size " << buffer_size; | |||
| return FAILED; | |||
| } | |||
| aclmdlIODims dims; | |||
| ret = aclmdlGetOutputDims(model_desc_, i, &dims); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Get input shape failed"; | |||
| if (!is_run_on_device_) { | |||
| aclrtFree(data_mem_buffer); | |||
| } else { | |||
| aclrtFreeHost(data_mem_buffer); | |||
| } | |||
| return FAILED; | |||
| } | |||
| aclDataType data_type = aclmdlGetOutputDataType(model_desc_, i); | |||
| std::vector<int64_t> shape(dims.dims, dims.dims + dims.dimCount); | |||
| std::string output_name = aclmdlGetOutputNameByIndex(model_desc_, i); | |||
| if (output_name.empty()) { | |||
| MS_LOG(WARNING) << "Get name of output " << i << " failed."; | |||
| } | |||
| MS_LOG(INFO) << "Name of input " << i << " is " << output_name; | |||
| output_infos_.emplace_back(AclTensorInfo{data_mem_buffer, buffer_size, data_type, shape, output_name}); | |||
| } | |||
| MS_LOG(INFO) << "Create model output success"; | |||
| return SUCCESS; | |||
| } | |||
| void ModelProcess::DestroyInputsDataset() { | |||
| if (inputs_ == nullptr) { | |||
| return; | |||
| } | |||
| for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(inputs_); i++) { | |||
| auto dataBuffer = aclmdlGetDatasetBuffer(inputs_, i); | |||
| aclDestroyDataBuffer(dataBuffer); | |||
| } | |||
| aclmdlDestroyDataset(inputs_); | |||
| inputs_ = nullptr; | |||
| } | |||
| void ModelProcess::DestroyInputsDataMem() { | |||
| if (!is_run_on_device_) { | |||
| for (const auto &item : input_infos_) { | |||
| aclrtFree(item.device_data); | |||
| } | |||
| } | |||
| input_infos_.clear(); | |||
| } | |||
| void ModelProcess::DestroyInputsBuffer() { | |||
| DestroyInputsDataMem(); | |||
| DestroyInputsDataset(); | |||
| } | |||
| void ModelProcess::DestroyOutputsBuffer() { | |||
| for (const auto &item : output_infos_) { | |||
| if (!is_run_on_device_) { | |||
| aclrtFree(item.device_data); | |||
| } else { | |||
| aclrtFreeHost(item.device_data); | |||
| } | |||
| } | |||
| output_infos_.clear(); | |||
| if (outputs_ == nullptr) { | |||
| return; | |||
| } | |||
| for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(outputs_); i++) { | |||
| auto dataBuffer = aclmdlGetDatasetBuffer(outputs_, i); | |||
| aclDestroyDataBuffer(dataBuffer); | |||
| } | |||
| aclmdlDestroyDataset(outputs_); | |||
| outputs_ = nullptr; | |||
| } | |||
| Status ModelProcess::UnLoad() { | |||
| auto ret = aclmdlUnload(model_id_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Unload model failed"; | |||
| return FAILED; | |||
| } | |||
| if (model_desc_ != nullptr) { | |||
| ret = aclmdlDestroyDesc(model_desc_); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Unload model failed"; | |||
| return FAILED; | |||
| } | |||
| model_desc_ = nullptr; | |||
| } | |||
| DestroyInputsBuffer(); | |||
| DestroyOutputsBuffer(); | |||
| MS_LOG(INFO) << "End unload model " << model_id_; | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::CheckAndInitInput(const std::map<std::string, Buffer> &inputs) { | |||
| aclError ret; | |||
| inputs_ = aclmdlCreateDataset(); | |||
| // check inputs | |||
| if (inputs.size() != input_infos_.size()) { | |||
| MS_LOG(ERROR) << "inputs count not match, required count " << input_infos_.size() << ", given count " | |||
| << inputs.size(); | |||
| return INVALID_INPUTS; | |||
| } | |||
| for (size_t i = 0; i < input_infos_.size(); ++i) { | |||
| const std::string &input_name = input_infos_[i].name; | |||
| auto iter = inputs.find(input_name); | |||
| if (iter == inputs.end()) { | |||
| MS_LOG(ERROR) << "Model missing input " << input_name; | |||
| return INVALID_INPUTS; | |||
| } | |||
| if (iter->second.DataSize() != input_infos_[i].buffer_size) { | |||
| MS_LOG(ERROR) << "input " << i << " data size not match, required size " << input_infos_[i].buffer_size | |||
| << ", given count " << iter->second.DataSize(); | |||
| return INVALID_INPUTS; | |||
| } | |||
| } | |||
| // copy inputs | |||
| for (size_t i = 0; i < input_infos_.size(); ++i) { | |||
| const auto &info = input_infos_[i]; | |||
| auto iter = inputs.find(info.name); | |||
| if (iter == inputs.end()) { | |||
| MS_LOG(ERROR) << "Model missing input " << info.name; | |||
| return INVALID_INPUTS; | |||
| } | |||
| const auto &input = iter->second; | |||
| const void *data = input.Data(); | |||
| void *input_buffer; | |||
| if (!is_run_on_device_) { | |||
| ret = aclrtMemcpy(info.device_data, info.buffer_size, data, input.DataSize(), ACL_MEMCPY_HOST_TO_DEVICE); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Acl memcpy input " << i << " data to device failed, buffer size " << input.DataSize(); | |||
| return FAILED; | |||
| } | |||
| input_buffer = info.device_data; | |||
| } else { | |||
| input_buffer = const_cast<void *>(data); | |||
| } | |||
| auto data_buffer = aclCreateDataBuffer(input_buffer, info.buffer_size); | |||
| if (data_buffer == nullptr) { | |||
| MS_LOG(ERROR) << "Create Data Buffer failed"; | |||
| return FAILED; | |||
| } | |||
| ret = aclmdlAddDatasetBuffer(inputs_, data_buffer); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "add data buffer failed"; | |||
| aclDestroyDataBuffer(data_buffer); | |||
| return FAILED; | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::CheckAndInitDvppInput(const void *dvpp_outputs_buffer_dev, size_t dvpp_outputs_buffer_size, | |||
| size_t input_index) { | |||
| aclError ret; | |||
| inputs_ = aclmdlCreateDataset(); | |||
| // check inputs | |||
| if (input_index >= input_infos_.size()) { | |||
| MS_LOG(ERROR) << "inputs count not match, required count " << input_infos_.size() << ", given index " | |||
| << input_index; | |||
| return INVALID_INPUTS; | |||
| } | |||
| if (dvpp_outputs_buffer_dev == nullptr) { | |||
| MS_LOG(ERROR) << "input " << 0 << " cannot be null"; | |||
| return FAILED; | |||
| } | |||
| if (dvpp_outputs_buffer_size != input_infos_[input_index].buffer_size) { | |||
| MS_LOG(ERROR) << "input " << 0 << " data size not match, required size " << input_infos_[input_index].buffer_size | |||
| << ", given count " << dvpp_outputs_buffer_size; | |||
| return INVALID_INPUTS; | |||
| } | |||
| // copy inputs | |||
| auto &info = input_infos_[input_index]; | |||
| auto data_buffer = aclCreateDataBuffer(const_cast<void *>(dvpp_outputs_buffer_dev), info.buffer_size); | |||
| if (data_buffer == nullptr) { | |||
| MS_LOG(ERROR) << "Create Data Buffer failed"; | |||
| return FAILED; | |||
| } | |||
| ret = aclmdlAddDatasetBuffer(inputs_, data_buffer); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "add data buffer failed"; | |||
| aclDestroyDataBuffer(data_buffer); | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs) { | |||
| MS_EXCEPTION_IF_NULL(outputs); | |||
| aclError acl_ret; | |||
| Status ret = CheckAndInitInput(inputs); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "check or init input failed"; | |||
| DestroyInputsDataset(); | |||
| return ret; // forward status error | |||
| } | |||
| acl_ret = aclmdlExecute(model_id_, inputs_, outputs_); | |||
| DestroyInputsDataset(); | |||
| if (acl_ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Execute Model Failed"; | |||
| return FAILED; | |||
| } | |||
| ret = BuildOutputs(outputs); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "Build outputs faield"; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << "excute model success"; | |||
| return SUCCESS; | |||
| } | |||
| size_t ModelProcess::GetBatchSize() const { | |||
| if (input_infos_.empty()) { | |||
| MS_LOG(ERROR) << "Model is not loaded"; | |||
| return 0; | |||
| } | |||
| if (input_infos_[0].dims.empty()) { | |||
| return 1; | |||
| } | |||
| return static_cast<size_t>(input_infos_[0].dims[0]); | |||
| } | |||
| Status ModelProcess::BuildOutputs(std::map<std::string, Buffer> *outputs) { | |||
| MS_EXCEPTION_IF_NULL(outputs); | |||
| aclError ret; | |||
| // copy outputs | |||
| outputs->clear(); | |||
| aclrtMemcpyKind kind = is_run_on_device_ ? ACL_MEMCPY_HOST_TO_HOST : ACL_MEMCPY_DEVICE_TO_HOST; | |||
| for (size_t i = 0; i < output_infos_.size(); ++i) { | |||
| const auto &info = output_infos_[i]; | |||
| // todo | |||
| outputs->emplace(info.name, Buffer()); | |||
| auto output = outputs->rbegin()->second; | |||
| if (!output.ResizeData(info.buffer_size)) { | |||
| MS_LOG(ERROR) << "new output data buffer failed, data size " << info.buffer_size; | |||
| return FAILED; | |||
| } | |||
| ret = aclrtMemcpy(output.MutableData(), output.DataSize(), info.device_data, info.buffer_size, kind); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "Memcpy output " << i << " from " << (is_run_on_device_ ? "host" : "device") | |||
| << " to host failed, memory size " << info.buffer_size; | |||
| return FAILED; | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::GetInputsInfo(std::vector<Tensor> *tensor_list) const { | |||
| ConstructTensorDesc(input_infos_, tensor_list); | |||
| return SUCCESS; | |||
| } | |||
| Status ModelProcess::GetOutputsInfo(std::vector<Tensor> *tensor_list) const { | |||
| ConstructTensorDesc(output_infos_, tensor_list); | |||
| return SUCCESS; | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,93 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_MODEL_PROCESS_H | |||
| #define MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_MODEL_PROCESS_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include <map> | |||
| #include "acl/acl.h" | |||
| #include "acl/acl_mdl.h" | |||
| #include "acl/acl_rt.h" | |||
| #include "include/api/status.h" | |||
| #include "include/api/types.h" | |||
| namespace mindspore::api { | |||
| struct AclTensorInfo { | |||
| void *device_data; | |||
| size_t buffer_size; | |||
| aclDataType data_type; | |||
| std::vector<int64_t> dims; | |||
| std::string name; | |||
| }; | |||
| struct ImagesDvppOutput { | |||
| void *buffer_device = nullptr; | |||
| size_t buffer_size = 0; | |||
| size_t input_index = 0; | |||
| }; | |||
| class ModelProcess { | |||
| public: | |||
| ModelProcess() | |||
| : model_id_(0xffffffff), | |||
| is_run_on_device_(false), | |||
| model_desc_(nullptr), | |||
| inputs_(nullptr), | |||
| outputs_(nullptr), | |||
| input_infos_(), | |||
| output_infos_() {} | |||
| ~ModelProcess() {} | |||
| Status LoadModelFromFile(const std::string &file_name, uint32_t *model_id); | |||
| Status UnLoad(); | |||
| Status Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs); | |||
| Status PreInitModelResource(); | |||
| Status GetInputsInfo(std::vector<Tensor> *tensor_list) const; | |||
| Status GetOutputsInfo(std::vector<Tensor> *tensor_list) const; | |||
| // override this method to avoid request/reply data copy | |||
| void SetIsDevice(bool is_device) { is_run_on_device_ = is_device; } | |||
| size_t GetBatchSize() const; | |||
| void set_model_id(uint32_t model_id) { model_id_ = model_id; } | |||
| uint32_t model_id() const { return model_id_; } | |||
| private: | |||
| Status CreateDataBuffer(void **data_mem_buffer, size_t buffer_size, aclmdlDataset *dataset); | |||
| Status CheckAndInitInput(const std::map<std::string, Buffer> &inputs); | |||
| Status CheckAndInitDvppInput(const void *dvpp_outputs_buffer_dev, size_t dvpp_outputs_buffer_size, | |||
| size_t input_index); | |||
| Status BuildOutputs(std::map<std::string, Buffer> *outputs); | |||
| Status InitInputsBuffer(); | |||
| Status InitOutputsBuffer(); | |||
| void DestroyInputsDataset(); | |||
| void DestroyInputsDataMem(); | |||
| void DestroyInputsBuffer(); | |||
| void DestroyOutputsBuffer(); | |||
| uint32_t model_id_; | |||
| // if run one device(AICPU), there is no need to alloc device memory and copy inputs to(/outputs from) device | |||
| bool is_run_on_device_; | |||
| aclmdlDesc *model_desc_; | |||
| aclmdlDataset *inputs_; | |||
| aclmdlDataset *outputs_; | |||
| std::vector<AclTensorInfo> input_infos_; | |||
| std::vector<AclTensorInfo> output_infos_; | |||
| }; | |||
| } // namespace mindspore::api | |||
| #endif // MINDSPORE_CCSRC_CXXAPI_SESSION_ACL_MODEL_PROCESS_H | |||
| @@ -0,0 +1,98 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "include/api/model.h" | |||
| #include "cxx_api/model/model_impl.h" | |||
| #include "utils/utils.h" | |||
| namespace mindspore::api { | |||
| Status Model::LoadModel(const Buffer &model_data, ModelType type, const std::map<std::string, std::string> &options) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->LoadModel(model_data, type, options); | |||
| } | |||
| Status Model::LoadModel(const std::string &file_name, ModelType type, | |||
| const std::map<std::string, std::string> &options) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->LoadModel(file_name, type, options); | |||
| } | |||
| Status Model::UnloadModel() { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->UnloadModel(); | |||
| } | |||
| Status Model::Train(const DataSet &dataset, std::map<std::string, Buffer> *outputs) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Train(dataset, outputs); | |||
| } | |||
| Status Model::Eval(const DataSet &dataset, std::map<std::string, Buffer> *outputs) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Eval(dataset, outputs); | |||
| } | |||
| Status Model::Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Predict(inputs, outputs); | |||
| } | |||
| Status Model::Predict(const std::vector<Buffer> &inputs, std::map<std::string, Buffer> *outputs) { | |||
| std::vector<Tensor> tensor_list; | |||
| auto ret = GetInputsInfo(&tensor_list); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "GetInputsInfo failed."; | |||
| return ret; | |||
| } | |||
| if (inputs.size() != tensor_list.size()) { | |||
| MS_LOG(ERROR) << "Model need " << tensor_list.size() << " inputs, but given " << inputs.size(); | |||
| return FAILED; | |||
| } | |||
| std::map<std::string, Buffer> inputs_with_map; | |||
| for (size_t i = 0; i < tensor_list.size(); ++i) { | |||
| inputs_with_map.emplace(tensor_list[i].Name(), inputs[i]); | |||
| } | |||
| return Predict(inputs_with_map, outputs); | |||
| } | |||
| Status Model::GetInputsInfo(std::vector<Tensor> *tensor_list) const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->GetInputsInfo(tensor_list); | |||
| } | |||
| Status Model::GetOutputsInfo(std::vector<Tensor> *tensor_list) const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->GetOutputsInfo(tensor_list); | |||
| } | |||
| Model::Model(const std::string &device_type, uint32_t device_id) | |||
| : impl_(ModelFactory::Instance().Create(device_type, device_id)) { | |||
| if (impl_ == nullptr) { | |||
| MS_LOG(EXCEPTION) << "Create session type " << device_type << " failed"; | |||
| } | |||
| } | |||
| Model::Model(NetWork network, const std::string &device_type, uint32_t device_id) { | |||
| // todo | |||
| if (impl_ == nullptr) { | |||
| MS_LOG(EXCEPTION) << "Create session type " << device_type << " failed"; | |||
| } | |||
| } | |||
| Model::~Model() {} | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,93 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_CXX_API_MODEL_MODEL_IMPL_H | |||
| #define MINDSPORE_CCSRC_CXX_API_MODEL_MODEL_IMPL_H | |||
| #include <functional> | |||
| #include <map> | |||
| #include <string> | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <utility> | |||
| #include "include/api/model.h" | |||
| #include "utils/utils.h" | |||
| namespace mindspore::api { | |||
| class ModelImpl { | |||
| public: | |||
| ModelImpl() = default; | |||
| virtual ~ModelImpl() = default; | |||
| virtual Status LoadModel(const Buffer &model_data, ModelType type, | |||
| const std::map<std::string, std::string> &options) = 0; | |||
| virtual Status LoadModel(const std::string &file_name, ModelType type, | |||
| const std::map<std::string, std::string> &options) = 0; | |||
| virtual Status UnloadModel() = 0; | |||
| virtual Status Train(const DataSet &dataset, std::map<std::string, Buffer> *outputs) = 0; | |||
| virtual Status Eval(const DataSet &dataset, std::map<std::string, Buffer> *outputs) = 0; | |||
| virtual Status Predict(const std::map<std::string, Buffer> &inputs, std::map<std::string, Buffer> *outputs) = 0; | |||
| virtual Status GetInputsInfo(std::vector<Tensor> *tensor_list) const = 0; | |||
| virtual Status GetOutputsInfo(std::vector<Tensor> *tensor_list) const = 0; | |||
| }; | |||
| using ModelCreator = std::function<std::shared_ptr<ModelImpl>(uint32_t device_id)>; | |||
| class ModelFactory { | |||
| public: | |||
| ModelFactory(const ModelFactory &) = delete; | |||
| void operator=(const ModelFactory &) = delete; | |||
| static ModelFactory &Instance() { | |||
| static ModelFactory instance; | |||
| return instance; | |||
| } | |||
| void Register(const std::string &device_name, ModelCreator &&model_creator) { | |||
| if (model_creators_.find(device_name) == model_creators_.end()) { | |||
| (void)model_creators_.emplace(device_name, model_creator); | |||
| } | |||
| } | |||
| std::shared_ptr<ModelImpl> Create(const std::string &device_name, uint32_t device_id) { | |||
| auto iter = model_creators_.find(device_name); | |||
| if (model_creators_.end() != iter) { | |||
| MS_EXCEPTION_IF_NULL(iter->second); | |||
| return (iter->second)(device_id); | |||
| } | |||
| return nullptr; | |||
| } | |||
| private: | |||
| ModelFactory() = default; | |||
| ~ModelFactory() = default; | |||
| std::map<std::string, ModelCreator> model_creators_; | |||
| }; | |||
| class ModelRegistrar { | |||
| public: | |||
| ModelRegistrar(const std::string &device_name, ModelCreator model_creator) { | |||
| ModelFactory::Instance().Register(device_name, std::move(model_creator)); | |||
| } | |||
| ~ModelRegistrar() = default; | |||
| }; | |||
| #define API_REG_MODEL(DEVICE_NAME, MODEL_CLASS) \ | |||
| static const ModelRegistrar g_api_model_registrar__##DEVICE_NAME##_##_reg( \ | |||
| #DEVICE_NAME, [](uint32_t device_id) { return std::make_shared<MODEL_CLASS>(device_id); }); | |||
| } // namespace mindspore::api | |||
| #endif // MINDSPORE_CCSRC_CXX_API_MODEL_MODEL_IMPL_H | |||
| @@ -0,0 +1,38 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "include/api/ops/ops.h" | |||
| namespace mindspore::api { | |||
| Conv2D::Conv2D(int out_channel, const std::vector<int> &kernel_size, int mode, const std::string &pad_mode, | |||
| const std::vector<int> &pad, const std::vector<int> &stride, const std::vector<int> &dilation, int group) | |||
| : OpCell("Conv2D"), | |||
| out_channel(out_channel), | |||
| kernel_size(kernel_size), | |||
| mode(mode), | |||
| pad_mode(pad_mode), | |||
| pad(pad), | |||
| stride(stride), | |||
| dilation(dilation), | |||
| group(group) {} | |||
| Output Conv2D::operator()(const Input &input1, const Input &input2) const { | |||
| return CellBase::operator()({input1, input2})[0]; | |||
| } | |||
| std::vector<Output> Conv2D::Construct(const std::vector<Input> &inputs) { | |||
| return {Output(shared_from_this(), inputs, 1)}; | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,39 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "include/api/serialization.h" | |||
| #include "utils/log_adapter.h" | |||
| namespace mindspore::api { | |||
| Status Serialization::LoadCheckPoint(const std::string &ckpt_file, std::map<std::string, Buffer> *parameters) { | |||
| MS_LOG(ERROR) << "Unsupported feature."; | |||
| return FAILED; | |||
| } | |||
| Status Serialization::SetParameters(const std::map<std::string, Buffer> ¶meters, Model *model) { | |||
| MS_LOG(ERROR) << "Unsupported feature."; | |||
| return FAILED; | |||
| } | |||
| Status Serialization::ExportModel(const Model &model, ModelType model_type, Buffer *model_data) { | |||
| MS_LOG(ERROR) << "Unsupported feature."; | |||
| return FAILED; | |||
| } | |||
| Status Serialization::ExportModel(const Model &model, ModelType model_type, const std::string &model_file) { | |||
| MS_LOG(ERROR) << "Unsupported feature."; | |||
| return FAILED; | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -0,0 +1,226 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "include/api/types.h" | |||
| #include <numeric> | |||
| #include "securec/include/securec.h" | |||
| #include "utils/utils.h" | |||
| namespace mindspore::api { | |||
| class DataImpl { | |||
| public: | |||
| DataImpl() : data_() {} | |||
| ~DataImpl() = default; | |||
| DataImpl(const void *data, size_t data_len) { SetData(data, data_len); } | |||
| const void *Data() const { return data_.data(); } | |||
| void *MutableData() { return data_.data(); } | |||
| size_t DataSize() const { return data_.size(); } | |||
| bool ResizeData(size_t data_len) { | |||
| data_.resize(data_len); | |||
| return true; | |||
| } | |||
| bool SetData(const void *data, size_t data_len) { | |||
| ResizeData(data_len); | |||
| if (DataSize() != data_len) { | |||
| MS_LOG(ERROR) << "Set data failed, tensor current data size " << DataSize() << " not match data len " << data_len; | |||
| return false; | |||
| } | |||
| if (data == nullptr) { | |||
| return data_len == 0; | |||
| } | |||
| if (MutableData() == nullptr) { | |||
| MS_LOG(ERROR) << "Set data failed, data len " << data_len; | |||
| return false; | |||
| } | |||
| auto ret = memcpy_s(MutableData(), DataSize(), data, data_len); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Set data memcpy_s failed, ret = " << ret; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| protected: | |||
| std::vector<uint8_t> data_; | |||
| }; | |||
| class Buffer::Impl : public DataImpl { | |||
| public: | |||
| Impl() : DataImpl() {} | |||
| ~Impl() = default; | |||
| Impl(const void *data, size_t data_len) : DataImpl(data, data_len) {} | |||
| }; | |||
| class Tensor::Impl : public DataImpl { | |||
| public: | |||
| Impl() : DataImpl(), name_(), type_(DataType::kMsUnknown), shape_() {} | |||
| ~Impl() = default; | |||
| Impl(const std::string &name, api::DataType type, const std::vector<int64_t> &shape, const void *data, | |||
| size_t data_len) | |||
| : DataImpl(data, data_len), name_(name), type_(type), shape_(shape) {} | |||
| const std::string &Name() const { return name_; } | |||
| void SetName(const std::string &name) { name_ = name; } | |||
| api::DataType DataType() const { return type_; } | |||
| void SetDataType(api::DataType type) { type_ = type; } | |||
| void SetShape(const std::vector<int64_t> &shape) { shape_ = shape; } | |||
| const std::vector<int64_t> &Shape() const { return shape_; } | |||
| int64_t ElementNum() const { | |||
| std::vector<int64_t> shapex = Shape(); | |||
| return std::accumulate(shapex.begin(), shapex.end(), 1LL, std::multiplies<int64_t>()); | |||
| } | |||
| static int GetTypeSize(api::DataType type) { | |||
| static const std::map<api::DataType, size_t> type_size_map = { | |||
| {kMsBool, sizeof(bool)}, {kMsFloat64, sizeof(double)}, {kMsInt8, sizeof(int8_t)}, | |||
| {kMsUint8, sizeof(uint8_t)}, {kMsInt16, sizeof(int16_t)}, {kMsUint16, sizeof(uint16_t)}, | |||
| {kMsInt32, sizeof(int32_t)}, {kMsUint32, sizeof(uint32_t)}, {kMsInt64, sizeof(int64_t)}, | |||
| {kMsUint64, sizeof(uint64_t)}, {kMsFloat16, sizeof(uint16_t)}, {kMsFloat32, sizeof(float)}, | |||
| }; | |||
| auto it = type_size_map.find(type); | |||
| if (it != type_size_map.end()) { | |||
| return it->second; | |||
| } | |||
| MS_LOG(WARNING) << "Cannot find data type " << type; | |||
| return 0; | |||
| } | |||
| private: | |||
| std::string name_; | |||
| api::DataType type_; | |||
| std::vector<int64_t> shape_; | |||
| }; | |||
| Tensor::Tensor() : impl_(std::make_shared<Impl>()) {} | |||
| Tensor::Tensor(const std::string &name, api::DataType type, const std::vector<int64_t> &shape, const void *data, | |||
| size_t data_len) | |||
| : impl_(std::make_shared<Impl>(name, type, shape, data, data_len)) {} | |||
| Tensor::~Tensor() = default; | |||
| Tensor Tensor::Clone() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| Tensor ret; | |||
| ret.impl_ = std::make_shared<Impl>(*impl_); | |||
| return ret; | |||
| } | |||
| const std::string &Tensor::Name() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Name(); | |||
| } | |||
| void Tensor::SetName(const std::string &name) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| impl_->SetName(name); | |||
| } | |||
| DataType Tensor::DataType() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->DataType(); | |||
| } | |||
| void Tensor::SetDataType(api::DataType type) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| impl_->SetDataType(type); | |||
| } | |||
| const std::vector<int64_t> &Tensor::Shape() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Shape(); | |||
| } | |||
| void Tensor::SetShape(const std::vector<int64_t> &shape) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| impl_->SetShape(shape); | |||
| } | |||
| const void *Tensor::Data() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Data(); | |||
| } | |||
| void *Tensor::MutableData() { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->MutableData(); | |||
| } | |||
| size_t Tensor::DataSize() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->DataSize(); | |||
| } | |||
| bool Tensor::ResizeData(size_t data_len) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->ResizeData(data_len); | |||
| } | |||
| bool Tensor::SetData(const void *data, size_t data_len) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->SetData(data, data_len); | |||
| } | |||
| int64_t Tensor::ElementNum() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->ElementNum(); | |||
| } | |||
| int Tensor::GetTypeSize(api::DataType type) { return Impl::GetTypeSize(type); } | |||
| Buffer::Buffer() : impl_(std::make_shared<Impl>()) {} | |||
| Buffer::Buffer(const void *data, size_t data_len) : impl_(std::make_shared<Impl>(data, data_len)) {} | |||
| Buffer::~Buffer() = default; | |||
| Buffer Buffer::Clone() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| Buffer ret; | |||
| ret.impl_ = std::make_shared<Impl>(*impl_); | |||
| return ret; | |||
| } | |||
| const void *Buffer::Data() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->Data(); | |||
| } | |||
| void *Buffer::MutableData() { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->MutableData(); | |||
| } | |||
| size_t Buffer::DataSize() const { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->DataSize(); | |||
| } | |||
| bool Buffer::ResizeData(size_t data_len) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->ResizeData(data_len); | |||
| } | |||
| bool Buffer::SetData(const void *data, size_t data_len) { | |||
| MS_EXCEPTION_IF_NULL(impl_); | |||
| return impl_->SetData(data, data_len); | |||
| } | |||
| } // namespace mindspore::api | |||
| @@ -1,5 +1,6 @@ | |||
| if (ENABLE_GE OR ENABLE_D) | |||
| if (ENABLE_GE OR ENABLE_D OR ENABLE_ACL) | |||
| file(GLOB_RECURSE _TRANSFORM_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc") | |||
| list(REMOVE_ITEM _TRANSFORM_SRC_LIST "graph_ir/op_declare/hcom_ops_declare.cc") | |||
| set_property(SOURCE ${_TRANSFORM_SRC_LIST} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_GE_ADPT) | |||
| add_library(_mindspore_transform_graph_ir_obj OBJECT ${_TRANSFORM_SRC_LIST}) | |||
| @@ -1579,7 +1579,6 @@ OperatorPtr DfGraphConvertor::ConvertParameter(const AnfNodePtr node) { | |||
| // build index for parameter using name | |||
| std::string name = std::static_pointer_cast<Parameter>(node)->name(); | |||
| params_[name] = node; | |||
| std::ostringstream ss; | |||
| ss << "op" << node.get(); | |||
| op_draw_name_[node.get()] = ss.str(); | |||
| @@ -76,8 +76,6 @@ file(GLOB_RECURSE CORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||
| list(APPEND SERVING_SRC "main.cc" ${hw_proto_srcs} ${hw_grpc_srcs} ${CORE_SRC_LIST}) | |||
| option(ENABLE_ACL "enable acl" OFF) | |||
| if (ENABLE_ACL) | |||
| if (DEFINED ENV{ASCEND_CUSTOM_PATH}) | |||
| set(ASCEND_PATH $ENV{ASCEND_CUSTOM_PATH}) | |||
| @@ -85,9 +83,11 @@ if (ENABLE_ACL) | |||
| set(ASCEND_PATH /usr/local/Ascend) | |||
| endif () | |||
| set(ACL_LIB_DIR ${ASCEND_PATH}/acllib/) | |||
| MESSAGE("acl lib dir " ${ACL_LIB_DIR}) | |||
| set(ATLAS_ACL_LIB_DIR ${ASCEND_PATH}/ascend-toolkit/latest/acllib) | |||
| MESSAGE("hisi acl lib dir " ${ACL_LIB_DIR} " ,atlas acl lib dir " ${ATLAS_ACL_LIB_DIR}) | |||
| include_directories(${ACL_LIB_DIR}/include/) | |||
| include_directories(${ATLAS_ACL_LIB_DIR}/include/) | |||
| file(GLOB_RECURSE ACL_SESSION_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "acl/*.cc") | |||
| list(APPEND SERVING_SRC ${ACL_SESSION_SRC_LIST}) | |||
| endif () | |||
| @@ -112,10 +112,13 @@ endif () | |||
| if (ENABLE_ACL) | |||
| add_compile_definitions(ENABLE_ACL) | |||
| add_compile_definitions(ENABLE_DVPP_INTERFACE) | |||
| set(ALC_LIB_SO ${ACL_LIB_DIR}/lib64/libruntime.so ${ACL_LIB_DIR}/lib64/libascendcl.so | |||
| ${ACL_LIB_DIR}/lib64/libacl_retr.so ${ACL_LIB_DIR}/lib64/libacl_cblas.so | |||
| ${ACL_LIB_DIR}/lib64/libacl_dvpp.so) | |||
| target_link_libraries(ms_serving ${ALC_LIB_SO}) | |||
| find_library(acl libascendcl.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_retr libacl_retr.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_cblas libacl_cblas.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_dvpp libacl_dvpp.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| find_library(acl_runtime libruntime.so ${ACL_LIB_DIR}/lib64 ${ATLAS_ACL_LIB_DIR}/lib64) | |||
| target_link_libraries(ms_serving ${acl} ${acl_retr} ${acl_cblas} ${acl_dvpp} ${acl_runtime}) | |||
| target_link_libraries(ms_serving jpeg_turbo::jpeg securec) | |||
| else () | |||
| target_link_libraries(ms_serving inference mindspore_gvar) | |||
| @@ -130,7 +130,11 @@ package_data = { | |||
| 'lib/*.so*', | |||
| 'lib/*.a', | |||
| '.commit_id', | |||
| 'ms_serving' | |||
| 'ms_serving', | |||
| 'include/*', | |||
| 'include/*/*', | |||
| 'include/*/*/*', | |||
| 'include/*/*/*/*' | |||
| ] | |||
| } | |||
| @@ -56,6 +56,7 @@ if(ENABLE_MINDDATA) | |||
| ./utils/*.cc | |||
| ./vm/*.cc | |||
| ./ps/*.cc | |||
| ./cxx_api/*.cc | |||
| ) | |||
| if(NOT ENABLE_PYTHON) | |||
| @@ -176,7 +177,7 @@ if (USE_GLOG) | |||
| target_link_libraries(ut_tests PRIVATE mindspore::glog) | |||
| endif() | |||
| target_link_libraries(ut_tests PRIVATE mindspore securec graph) | |||
| target_link_libraries(ut_tests PRIVATE mindspore mindspore_shared_lib securec graph) | |||
| # link grpc | |||
| if (EXISTS ${grpc_ROOT}/lib64) | |||
| @@ -0,0 +1,169 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <memory> | |||
| #include "common/common_test.h" | |||
| #include "include/api/types.h" | |||
| namespace mindspore { | |||
| class TestCxxApiTypes : public UT::Common { | |||
| public: | |||
| TestCxxApiTypes() = default; | |||
| }; | |||
| TEST_F(TestCxxApiTypes, test_tensor_set_name_SUCCESS) { | |||
| std::string tensor_name_before = "TEST1"; | |||
| std::string tensor_name_after = "TEST2"; | |||
| api::Tensor tensor1(tensor_name_before, api::DataType::kMsFloat32, {}, nullptr, 0); | |||
| api::Tensor tensor2 = tensor1; | |||
| api::Tensor tensor3 = tensor1.Clone(); | |||
| // name | |||
| ASSERT_EQ(tensor1.Name(), tensor_name_before); | |||
| ASSERT_EQ(tensor2.Name(), tensor_name_before); | |||
| ASSERT_EQ(tensor3.Name(), tensor_name_before); | |||
| tensor1.SetName(tensor_name_after); | |||
| ASSERT_EQ(tensor1.Name(), tensor_name_after); | |||
| ASSERT_EQ(tensor2.Name(), tensor_name_after); | |||
| ASSERT_EQ(tensor3.Name(), tensor_name_before); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_set_dtype_SUCCESS) { | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, {}, nullptr, 0); | |||
| api::Tensor tensor2 = tensor1; | |||
| api::Tensor tensor3 = tensor1.Clone(); | |||
| // dtype | |||
| ASSERT_EQ(tensor1.DataType(), api::DataType::kMsFloat32); | |||
| ASSERT_EQ(tensor2.DataType(), api::DataType::kMsFloat32); | |||
| ASSERT_EQ(tensor3.DataType(), api::DataType::kMsFloat32); | |||
| tensor1.SetDataType(api::DataType::kMsUint32); | |||
| ASSERT_EQ(tensor1.DataType(), api::DataType::kMsUint32); | |||
| ASSERT_EQ(tensor2.DataType(), api::DataType::kMsUint32); | |||
| ASSERT_EQ(tensor3.DataType(), api::DataType::kMsFloat32); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_set_shape_SUCCESS) { | |||
| std::vector<int64_t> shape = {3, 4, 5, 6}; | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, {}, nullptr, 0); | |||
| api::Tensor tensor2 = tensor1; | |||
| api::Tensor tensor3 = tensor1.Clone(); | |||
| // shape | |||
| ASSERT_EQ(tensor1.Shape(), std::vector<int64_t>()); | |||
| ASSERT_EQ(tensor2.Shape(), std::vector<int64_t>()); | |||
| ASSERT_EQ(tensor3.Shape(), std::vector<int64_t>()); | |||
| tensor1.SetShape(shape); | |||
| ASSERT_EQ(tensor1.Shape(), shape); | |||
| ASSERT_EQ(tensor2.Shape(), shape); | |||
| ASSERT_EQ(tensor3.Shape(), std::vector<int64_t>()); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_util_SUCCESS) { | |||
| std::vector<int64_t> shape = {3, 4, 5, 6}; | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, shape, data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(api::Tensor::GetTypeSize(api::DataType::kMsUint32), sizeof(uint32_t)); | |||
| ASSERT_EQ(tensor1.ElementNum(), 3 * 4 * 5 * 6); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_data_ref_and_copy_SUCCESS) { | |||
| std::vector<int64_t> shape = {3, 4, 5, 6}; | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, shape, data.data(), data.size() * sizeof(uint32_t)); | |||
| api::Tensor tensor2 = tensor1; | |||
| api::Tensor tensor3 = tensor1.Clone(); | |||
| // data | |||
| ASSERT_EQ(tensor1.DataSize(), tensor2.DataSize()); | |||
| ASSERT_EQ(tensor1.DataSize(), tensor3.DataSize()); | |||
| ASSERT_EQ(tensor1.Data(), tensor2.MutableData()); | |||
| ASSERT_NE(tensor1.Data(), tensor3.Data()); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_resize_data_SUCCESS) { | |||
| std::vector<int64_t> shape = {3, 4, 5, 6}; | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, shape, data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(tensor1.ResizeData(0), true); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_set_data_wrong_data_size_FAILED) { | |||
| std::vector<int64_t> shape = {3, 4, 5, 6}; | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, shape, data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(tensor1.SetData(nullptr, 1), false); | |||
| ASSERT_EQ(tensor1.SetData(data.data(), 0), false); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_tensor_set_data_SUCCESS) { | |||
| std::vector<int64_t> shape = {3, 4, 5, 6}; | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Tensor tensor1("", api::DataType::kMsFloat32, shape, data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(tensor1.SetData(nullptr, 0), true); | |||
| ASSERT_EQ(tensor1.SetData(data.data(), data.size() * sizeof(uint32_t)), true); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_buffer_data_ref_and_copy_SUCCESS) { | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Buffer buffer1(data.data(), data.size() * sizeof(uint32_t)); | |||
| api::Buffer buffer2 = buffer1; | |||
| api::Buffer buffer3 = buffer1.Clone(); | |||
| // data | |||
| ASSERT_EQ(buffer1.DataSize(), buffer2.DataSize()); | |||
| ASSERT_EQ(buffer1.DataSize(), buffer3.DataSize()); | |||
| ASSERT_EQ(buffer1.Data(), buffer2.MutableData()); | |||
| ASSERT_NE(buffer1.Data(), buffer3.Data()); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_buffer_resize_data_SUCCESS) { | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Buffer buffer1(data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(buffer1.ResizeData(0), true); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_buffer_set_data_wrong_data_size_FAILED) { | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Buffer buffer1(data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(buffer1.SetData(nullptr, 1), false); | |||
| ASSERT_EQ(buffer1.SetData(data.data(), 0), false); | |||
| } | |||
| TEST_F(TestCxxApiTypes, test_buffer_set_data_SUCCESS) { | |||
| std::vector<uint32_t> data(3 * 4 * 5 * 6, 123); | |||
| api::Buffer buffer1(data.data(), data.size() * sizeof(uint32_t)); | |||
| // data | |||
| ASSERT_EQ(buffer1.SetData(nullptr, 0), true); | |||
| ASSERT_EQ(buffer1.SetData(data.data(), data.size() * sizeof(uint32_t)), true); | |||
| } | |||
| } // namespace mindspore | |||