| @@ -5,33 +5,18 @@ | |||
| #define MIN(X, Y) (X < Y ? X : Y) | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void LeakyRelu_NHWC4(__read_only image2d_t input, __write_only image2d_t output, const int4 img_shape, | |||
| __global FLT4 *alpha, const int4 input_shape) { | |||
| __kernel void LeakyRelu(__read_only image2d_t input, __write_only image2d_t output, const int4 img_shape, | |||
| const float alpha) { | |||
| int Y = get_global_id(0); // H | |||
| int X = get_global_id(1); // W C4 | |||
| if (X >= img_shape.z || Y >= img_shape.y) return; | |||
| int C = X % UP_DIV(input_shape.w, SLICES); | |||
| FLT4 in_c4 = READ_IMAGE(input, smp_zero, (int2)(X, Y)); | |||
| FLT4 tmp; | |||
| tmp.x = in_c4.x > 0.0f ? in_c4.x : in_c4.x * alpha[C].x; | |||
| tmp.y = in_c4.y > 0.0f ? in_c4.y : in_c4.y * alpha[C].y; | |||
| tmp.z = in_c4.z > 0.0f ? in_c4.z : in_c4.z * alpha[C].z; | |||
| tmp.w = in_c4.w > 0.0f ? in_c4.w : in_c4.w * alpha[C].w; | |||
| WRITE_IMAGE(output, (int2)(X, Y), tmp); | |||
| } | |||
| __kernel void LeakyRelu_NC4HW4(__read_only image2d_t input, __write_only image2d_t output, const int4 img_shape, | |||
| __global FLT4 *alpha, const int4 input_shape) { | |||
| int Y = get_global_id(0); // C4 H | |||
| int X = get_global_id(1); // W | |||
| if (X >= img_shape.z || Y >= img_shape.y) return; | |||
| int C = Y / input_shape.y; | |||
| FLT4 in_c4 = READ_IMAGE(input, smp_zero, (int2)(X, Y)); | |||
| FLT4 tmp; | |||
| tmp.x = in_c4.x > 0.0f ? in_c4.x : in_c4.x * alpha[C].x; | |||
| tmp.y = in_c4.y > 0.0f ? in_c4.y : in_c4.y * alpha[C].y; | |||
| tmp.z = in_c4.z > 0.0f ? in_c4.z : in_c4.z * alpha[C].z; | |||
| tmp.w = in_c4.w > 0.0f ? in_c4.w : in_c4.w * alpha[C].w; | |||
| FLT alpha_f = TO_FLT(alpha); | |||
| tmp.x = in_c4.x > 0.0f ? in_c4.x : in_c4.x * alpha_f; | |||
| tmp.y = in_c4.y > 0.0f ? in_c4.y : in_c4.y * alpha_f; | |||
| tmp.z = in_c4.z > 0.0f ? in_c4.z : in_c4.z * alpha_f; | |||
| tmp.w = in_c4.w > 0.0f ? in_c4.w : in_c4.w * alpha_f; | |||
| WRITE_IMAGE(output, (int2)(X, Y), tmp); | |||
| } | |||
| @@ -39,46 +39,7 @@ using mindspore::schema::PrimitiveType_Activation; | |||
| namespace mindspore::kernel { | |||
| void ActivationOpenClKernel::InitBuffer() { | |||
| auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator(); | |||
| int elem_num = UP_ROUND(nhwc_shape_[3], C4NUM); | |||
| alpha_buff_ = allocator->Malloc(elem_num * fp_size); | |||
| alpha_buff_ = allocator->MapBuffer(alpha_buff_, CL_MAP_WRITE, nullptr, true); | |||
| memset(alpha_buff_, 0x00, elem_num * fp_size); | |||
| if (in_tensors_.size() == 1) { | |||
| if (enable_fp16_) { | |||
| uint16_t alpha_fp16 = Float32ToShort(alpha_); | |||
| auto alpha_buff_fp16 = reinterpret_cast<uint16_t *>(alpha_buff_); | |||
| for (int i = 0; i < nhwc_shape_[3]; i++) { | |||
| alpha_buff_fp16[i] = alpha_fp16; | |||
| } | |||
| } else { | |||
| auto alpha_buff_fp16 = reinterpret_cast<float *>(alpha_buff_); | |||
| for (int i = 0; i < nhwc_shape_[3]; i++) { | |||
| alpha_buff_fp16[i] = alpha_; | |||
| } | |||
| } | |||
| } else { | |||
| if (enable_fp16_) { | |||
| if (in_tensors_[1]->data_type() == kNumberTypeFloat32) { | |||
| auto alpha_buff_fp16 = reinterpret_cast<uint16_t *>(alpha_buff_); | |||
| for (int i = 0; i < nhwc_shape_[3]; i++) { | |||
| alpha_buff_fp16[i] = Float32ToShort(reinterpret_cast<float *>(in_tensors_[0]->Data())[i]); | |||
| } | |||
| } else { | |||
| memcpy(alpha_buff_, in_tensors_[0]->Data(), nhwc_shape_[3] * fp_size); | |||
| } | |||
| } else { | |||
| if (in_tensors_[1]->data_type() == kNumberTypeFloat16) { | |||
| MS_LOG(WARNING) << "fp16 model run in fp32 mode not support."; | |||
| memcpy(alpha_buff_, in_tensors_[0]->Data(), nhwc_shape_[3] * fp_size); | |||
| } else { | |||
| memcpy(alpha_buff_, in_tensors_[0]->Data(), nhwc_shape_[3] * fp_size); | |||
| } | |||
| } | |||
| } | |||
| allocator->UnmapBuffer(alpha_buff_); | |||
| } | |||
| void ActivationOpenClKernel::InitBuffer() {} | |||
| int ActivationOpenClKernel::Init() { | |||
| in_size_ = in_tensors_[0]->shape().size(); | |||
| @@ -102,9 +63,6 @@ int ActivationOpenClKernel::Init() { | |||
| MS_LOG(ERROR) << "Activate fun only support dim=4 or 2, but your dim=" << in_size_; | |||
| return RET_ERROR; | |||
| } | |||
| if (type_ == ActivationType_LEAKY_RELU) { | |||
| InitBuffer(); | |||
| } | |||
| std::map<int, std::vector<std::string>> Program_Kernel{ | |||
| {ActivationType_LEAKY_RELU, std::vector<std::string>{"LEAKY_RELU", "LeakyRelu"}}, | |||
| {ActivationType_RELU, std::vector<std::string>{"RELU", "Relu"}}, | |||
| @@ -119,9 +77,6 @@ int ActivationOpenClKernel::Init() { | |||
| std::set<std::string> build_options; | |||
| ocl_runtime->LoadSource(Program_Kernel[type_][0], source); | |||
| std::string kernel_name = Program_Kernel[type_][1]; | |||
| if (type_ == ActivationType_LEAKY_RELU) { | |||
| kernel_name += "_" + std::string(EnumNameFormat(op_format_)); | |||
| } | |||
| ocl_runtime->BuildKernel(kernel_, Program_Kernel[type_][0], kernel_name, build_options); | |||
| in_ori_format_ = in_tensors_[0]->GetFormat(); | |||
| out_ori_format_ = out_tensors_[0]->GetFormat(); | |||
| @@ -140,10 +95,7 @@ int ActivationOpenClKernel::Run() { | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, img2d_shape); | |||
| if (type_ == ActivationType_LEAKY_RELU) { | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, alpha_buff_, lite::opencl::MemType::BUF); | |||
| cl_int4 input_shape = {static_cast<int>(nhwc_shape_[0]), static_cast<int>(nhwc_shape_[1]), | |||
| static_cast<int>(nhwc_shape_[2]), static_cast<int>(nhwc_shape_[3])}; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, input_shape); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, alpha_); | |||
| } | |||
| std::vector<size_t> local = {}; | |||
| std::vector<size_t> global = {static_cast<size_t>(img2d_shape.s[1]), static_cast<size_t>(img2d_shape.s[2])}; | |||
| @@ -22,6 +22,7 @@ | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| #include "nnacl/fp32/common_func.h" | |||
| #include "src/runtime/kernel/opencl/kernel/prelu.h" | |||
| #include "src/runtime/opencl/opencl_runtime.h" | |||
| #include "src/runtime/kernel/opencl/cl/prelu.cl.inc" | |||
| @@ -35,18 +36,38 @@ using mindspore::schema::PrimitiveType_PReLU; | |||
| namespace mindspore::kernel { | |||
| void PReluOpenCLKernel::InitBuffer() { | |||
| int C = in_tensors_[1]->shape()[0]; | |||
| int div_ci = UP_DIV(C, C4NUM); | |||
| auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator(); | |||
| int elem_num = in_tensors_[0]->shape().size() == 2 ? in_tensors_[0]->shape()[1] : in_tensors_[0]->shape()[3]; | |||
| int elem_num_c4 = UP_DIV(elem_num, C4NUM); | |||
| size_t img_dtype = CL_FLOAT; | |||
| if (enable_fp16_) { | |||
| img_dtype = CL_HALF_FLOAT; | |||
| } | |||
| std::vector<size_t> img_size{size_t(div_ci), 1, img_dtype}; | |||
| PReluWeight_ = allocator->Malloc(div_ci * C4NUM * fp_size, img_size); | |||
| std::vector<size_t> img_size{size_t(elem_num_c4), 1, img_dtype}; | |||
| PReluWeight_ = allocator->Malloc(elem_num_c4 * C4NUM * fp_size, img_size); | |||
| PReluWeight_ = allocator->MapBuffer(PReluWeight_, CL_MAP_WRITE, nullptr, true); | |||
| memset(PReluWeight_, 0x00, div_ci * C4NUM * fp_size); | |||
| memcpy(PReluWeight_, in_tensors_[1]->Data(), C * fp_size); | |||
| memset(PReluWeight_, 0x00, elem_num_c4 * C4NUM * fp_size); | |||
| if (enable_fp16_) { | |||
| if (in_tensors_[1]->data_type() == kNumberTypeFloat32) { | |||
| auto PReluWeight_fp16 = reinterpret_cast<uint16_t *>(PReluWeight_); | |||
| auto in_tensor_data_fp32 = reinterpret_cast<float *>(in_tensors_[1]->Data()); | |||
| for (int i = 0; i < elem_num; i++) { | |||
| PReluWeight_fp16[i] = Float32ToShort(in_tensor_data_fp32[i]); | |||
| } | |||
| } else { | |||
| memcpy(PReluWeight_, in_tensors_[1]->Data(), elem_num * fp_size); | |||
| } | |||
| } else { | |||
| if (in_tensors_[1]->data_type() == kNumberTypeFloat16) { | |||
| auto PReluWeight_fp32 = reinterpret_cast<float *>(PReluWeight_); | |||
| auto in_tensor_data_fp16 = reinterpret_cast<uint16_t *>(in_tensors_[1]->Data()); | |||
| for (int i = 0; i < elem_num; i++) { | |||
| PReluWeight_fp32[i] = ShortToFloat32(in_tensor_data_fp16[i]); | |||
| } | |||
| } else { | |||
| memcpy(PReluWeight_, in_tensors_[1]->Data(), elem_num * fp_size); | |||
| } | |||
| } | |||
| allocator->UnmapBuffer(PReluWeight_); | |||
| } | |||
| @@ -432,7 +432,7 @@ TEST_F(TestActivationOpenCL, LeakyReluFp_dim4) { | |||
| std::vector<int> input_shape = {1, 9}; // need modify | |||
| auto tensor_type = schema::NodeType_ValueNode; | |||
| schema::Format format = schema::Format_NC; // need modify | |||
| schema::Format op_format = schema::Format_NC4; // need modify | |||
| schema::Format op_format = schema::Format_NHWC4; // need modify | |||
| auto *input_tensor = new (std::nothrow) lite::tensor::Tensor(data_type, input_shape, format, tensor_type); | |||
| if (input_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new input tensor error!"; | |||