| @@ -43,7 +43,7 @@ | |||||
| #include "src/runtime/kernel/arm/opclib/fp32/range.h" | #include "src/runtime/kernel/arm/opclib/fp32/range.h" | ||||
| #include "src/runtime/kernel/arm/opclib/fp32/local_response_norm.h" | #include "src/runtime/kernel/arm/opclib/fp32/local_response_norm.h" | ||||
| #include "src/runtime/kernel/arm/opclib/fp32/expandDims.h" | #include "src/runtime/kernel/arm/opclib/fp32/expandDims.h" | ||||
| #include "src/runtime/kernel/arm/opclib/fp32/arithmetic_self.h" | |||||
| #include "src/runtime/kernel/arm/opclib/arithmetic_self_parameter.h" | |||||
| #include "src/runtime/kernel/arm/opclib/pad_parameter.h" | #include "src/runtime/kernel/arm/opclib/pad_parameter.h" | ||||
| #include "src/runtime/kernel/arm/opclib/fp32/fill.h" | #include "src/runtime/kernel/arm/opclib/fp32/fill.h" | ||||
| #include "src/runtime/kernel/arm/opclib/transpose.h" | #include "src/runtime/kernel/arm/opclib/transpose.h" | ||||
| @@ -20,6 +20,7 @@ | |||||
| #include <vector> | #include <vector> | ||||
| #include "src/lite_kernel.h" | #include "src/lite_kernel.h" | ||||
| #include "src/runtime/kernel/arm/opclib/fp32/arithmetic_self.h" | #include "src/runtime/kernel/arm/opclib/fp32/arithmetic_self.h" | ||||
| #include "src/runtime/kernel/arm/opclib/arithmetic_self_parameter.h" | |||||
| #include "schema/model_generated.h" | #include "schema/model_generated.h" | ||||
| #include "include/context.h" | #include "include/context.h" | ||||
| @@ -0,0 +1,120 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/runtime/kernel/arm/int8/arithmetic_self_int8.h" | |||||
| #include <limits> | |||||
| #include "schema/model_generated.h" | |||||
| #include "src/kernel_registry.h" | |||||
| #include "include/errorcode.h" | |||||
| #include "src/runtime/runtime_api.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||||
| using mindspore::lite::KernelRegistrar; | |||||
| using mindspore::lite::RET_ERROR; | |||||
| using mindspore::lite::RET_OK; | |||||
| namespace mindspore::kernel { | |||||
| int ArithmeticSelfInt8CPUKernel::Init() { | |||||
| int ret = ReSize(); | |||||
| auto *input_tensor = inputs_.at(kInputIndex); | |||||
| auto in_quant_args = input_tensor->GetQuantParams(); | |||||
| arithmeticSelfParameter_->quant_arg_.in_args_.scale_ = in_quant_args.front().scale; | |||||
| arithmeticSelfParameter_->quant_arg_.in_args_.zp_ = in_quant_args.front().zeroPoint; | |||||
| auto *out_tensor = outputs_.at(kOutputIndex); | |||||
| auto out_quant_args = out_tensor->GetQuantParams(); | |||||
| arithmeticSelfParameter_->quant_arg_.out_args_.scale_ = out_quant_args.front().scale; | |||||
| arithmeticSelfParameter_->quant_arg_.out_args_.zp_ = out_quant_args.front().zeroPoint; | |||||
| arithmeticSelfParameter_->quant_arg_.output_activation_max_ = std::numeric_limits<int8_t>::max(); | |||||
| arithmeticSelfParameter_->quant_arg_.output_activation_min_ = std::numeric_limits<int8_t>::min(); | |||||
| return ret; | |||||
| } | |||||
| int ArithmeticSelfInt8CPUKernel::ReSize() { | |||||
| data_size_ = inputs_[0]->ElementsNum(); | |||||
| thread_sz_count_ = MSMIN(thread_count_, data_size_); | |||||
| thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_); | |||||
| return RET_OK; | |||||
| } | |||||
| int ArithmeticSelfInt8Runs(int task_id, LiteParallelGroupEnv *penv, void *cdata) { | |||||
| auto g_kernel = reinterpret_cast<ArithmeticSelfInt8CPUKernel *>(cdata); | |||||
| auto ret = g_kernel->DoArithmeticSelf(task_id); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "ArithmeticSelfRuns error task_id[" << task_id << "] error_code[" << ret << "]"; | |||||
| return ret; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int ArithmeticSelfInt8CPUKernel::DoArithmeticSelf(int task_id) { | |||||
| int size = MSMIN(thread_sz_stride_, data_size_ - task_id * thread_sz_stride_); | |||||
| if (size <= 0) { | |||||
| return RET_OK; | |||||
| } | |||||
| int offset = task_id * thread_sz_stride_; | |||||
| if (arithmeticSelf_run_) { | |||||
| auto ret = arithmeticSelf_run_(in_ptr_ + offset, out_ptr_ + offset, size, arithmeticSelfParameter_->quant_arg_); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Run failed, illegal input! "; | |||||
| return ret; | |||||
| } | |||||
| } else { | |||||
| MS_LOG(ERROR) << "Run function is null! "; | |||||
| return RET_ERROR; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int ArithmeticSelfInt8CPUKernel::Run() { | |||||
| auto input_tensor = inputs_.at(0); | |||||
| auto out_tensor = outputs_.at(0); | |||||
| in_ptr_ = reinterpret_cast<int8_t *>(input_tensor->Data()); | |||||
| out_ptr_ = reinterpret_cast<int8_t *>(out_tensor->Data()); | |||||
| int ret = LiteBackendParallelLaunch(ArithmeticSelfInt8Runs, this, thread_sz_count_); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "ArithmeticSelfRun error error_code[" << ret << "]"; | |||||
| return ret; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| kernel::LiteKernel *CpuArithmeticSelfInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs, | |||||
| const std::vector<lite::tensor::Tensor *> &outputs, | |||||
| OpParameter *opParameter, const lite::Context *ctx, | |||||
| const kernel::KernelKey &desc) { | |||||
| MS_ASSERT(opParameter != nullptr); | |||||
| if (opParameter == nullptr) { | |||||
| MS_LOG(ERROR) << "Creator failed, opParameter is nullptr!"; | |||||
| return nullptr; | |||||
| } | |||||
| auto *kernel = new (std::nothrow) ArithmeticSelfInt8CPUKernel(opParameter, inputs, outputs, ctx); | |||||
| MS_ASSERT(kernel != nullptr); | |||||
| auto ret = kernel->Init(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: " | |||||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||||
| delete kernel; | |||||
| return nullptr; | |||||
| } | |||||
| return kernel; | |||||
| } | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Round, CpuArithmeticSelfInt8KernelCreator) | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Floor, CpuArithmeticSelfInt8KernelCreator) | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Ceil, CpuArithmeticSelfInt8KernelCreator) | |||||
| } // namespace mindspore::kernel | |||||
| @@ -0,0 +1,77 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_SELF_INT8_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_SELF_INT8_H_ | |||||
| #include <vector> | |||||
| #include "src/lite_kernel.h" | |||||
| #include "src/runtime/kernel/arm/opclib/arithmetic_self_parameter.h" | |||||
| #include "src/runtime/kernel/arm/opclib/int8/arithmetic_self_int8.h" | |||||
| #include "schema/model_generated.h" | |||||
| #include "include/context.h" | |||||
| using mindspore::lite::Context; | |||||
| using mindspore::schema::PrimitiveType_Round; | |||||
| using mindspore::schema::PrimitiveType_Floor; | |||||
| using mindspore::schema::PrimitiveType_Ceil; | |||||
| namespace mindspore::kernel { | |||||
| class ArithmeticSelfInt8CPUKernel : public LiteKernel { | |||||
| typedef int (*ArithmeticSelfInt8Run)(int8_t *input, int8_t *output, int element_size, ArithSelfQuantArg para); | |||||
| public: | |||||
| explicit ArithmeticSelfInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs, | |||||
| const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx) | |||||
| : LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->threadNum) { | |||||
| switch (parameter->type_) { | |||||
| case PrimitiveType_Round: | |||||
| arithmeticSelf_run_ = ElementRound; | |||||
| break; | |||||
| case PrimitiveType_Floor: | |||||
| arithmeticSelf_run_ = ElementFloor; | |||||
| break; | |||||
| case PrimitiveType_Ceil: | |||||
| arithmeticSelf_run_ = ElementCeil; | |||||
| break; | |||||
| default: | |||||
| break; | |||||
| } | |||||
| arithmeticSelfParameter_ = reinterpret_cast<ArithmeticSelfParameter *>(parameter); | |||||
| } | |||||
| ~ArithmeticSelfInt8CPUKernel() override = default; | |||||
| int Init() override; | |||||
| int ReSize() override; | |||||
| int Run() override; | |||||
| int DoArithmeticSelf(int task_id); | |||||
| private: | |||||
| int thread_count_; | |||||
| int thread_sz_count_; | |||||
| int thread_sz_stride_; | |||||
| size_t data_size_; | |||||
| ArithmeticSelfParameter *arithmeticSelfParameter_; | |||||
| ArithmeticSelfInt8Run arithmeticSelf_run_; | |||||
| const Context *ctx_; | |||||
| int8_t *in_ptr_; | |||||
| int8_t *out_ptr_; | |||||
| }; | |||||
| } // namespace mindspore::kernel | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_SELF_INT8_H_ | |||||
| @@ -0,0 +1,29 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_ARITHMETIC_SELF_PARAMETER_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_ARITHMETIC_SELF_PARAMETER_H_ | |||||
| #include "src/runtime/kernel/arm/opclib/op_base.h" | |||||
| #include "src/runtime/kernel/arm/opclib/errorcode.h" | |||||
| // For Abs, Cos, Exp, Log, Square, Sqrt, Rsqrt ops. | |||||
| struct ArithmeticSelfParameter { | |||||
| OpParameter op_parameter_; | |||||
| ArithSelfQuantArg quant_arg_; | |||||
| }; | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_ARITHMETIC_SELF_PARAMETER_H_ | |||||
| @@ -23,11 +23,6 @@ | |||||
| #include "src/runtime/kernel/arm/opclib/op_base.h" | #include "src/runtime/kernel/arm/opclib/op_base.h" | ||||
| #include "src/runtime/kernel/arm/opclib/errorcode.h" | #include "src/runtime/kernel/arm/opclib/errorcode.h" | ||||
| // For Abs, Cos, Exp, Log, Square, Sqrt, Rsqrt ops. | |||||
| struct ArithmeticSelfParameter { | |||||
| OpParameter op_parameter_; | |||||
| }; | |||||
| int ElementAbs(float *input, float *output, int element_size); | int ElementAbs(float *input, float *output, int element_size); | ||||
| int ElementCos(float *input, float *output, int element_size); | int ElementCos(float *input, float *output, int element_size); | ||||
| @@ -0,0 +1,93 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <math.h> | |||||
| #include "src/runtime/kernel/arm/opclib/int8/arithmetic_self_int8.h" | |||||
| int ElementFloor(int8_t *input, int8_t *output, int element_size, ArithSelfQuantArg para) { | |||||
| if (para.in_args_.scale_ == para.out_args_.scale_ && para.in_args_.zp_ == para.out_args_.zp_) { | |||||
| for (int i = 0; i < element_size; i++) { | |||||
| output[i] = floorf(input[i]); | |||||
| } | |||||
| } else { | |||||
| float in_scale = para.in_args_.scale_; | |||||
| int32_t in_zp = para.in_args_.zp_; | |||||
| float out_scale = para.out_args_.scale_; | |||||
| int32_t out_zp = para.out_args_.zp_; | |||||
| float bias = -in_zp * in_scale; | |||||
| for (int i = 0; i < element_size; i++) { | |||||
| int32_t output_tmp = round(floorf(input[i] * in_scale + bias) / out_scale) + out_zp; | |||||
| if (output_tmp > para.output_activation_max_) { | |||||
| output[i] = para.output_activation_max_; | |||||
| } else if (output_tmp < para.output_activation_min_) { | |||||
| output[i] = para.output_activation_min_; | |||||
| } else { | |||||
| output[i] = static_cast<int8_t>(output_tmp); | |||||
| } | |||||
| } | |||||
| } | |||||
| return OPCLIB_OK; | |||||
| } | |||||
| int ElementRound(int8_t *input, int8_t *output, int element_size, ArithSelfQuantArg para) { | |||||
| if (para.in_args_.scale_ == para.out_args_.scale_ && para.in_args_.zp_ == para.out_args_.zp_) { | |||||
| for (int i = 0; i < element_size; i++) { | |||||
| output[i] = round(input[i]); | |||||
| } | |||||
| } else { | |||||
| float in_scale = para.in_args_.scale_; | |||||
| int32_t in_zp = para.in_args_.zp_; | |||||
| float out_scale = para.out_args_.scale_; | |||||
| int32_t out_zp = para.out_args_.zp_; | |||||
| float bias = -in_zp * in_scale; | |||||
| for (int i = 0; i < element_size; i++) { | |||||
| int32_t output_tmp = round(round(input[i] * in_scale + bias) / out_scale) + out_zp; | |||||
| if (output_tmp > para.output_activation_max_) { | |||||
| output[i] = para.output_activation_max_; | |||||
| } else if (output_tmp < para.output_activation_min_) { | |||||
| output[i] = para.output_activation_min_; | |||||
| } else { | |||||
| output[i] = static_cast<int8_t>(output_tmp); | |||||
| } | |||||
| } | |||||
| } | |||||
| return OPCLIB_OK; | |||||
| } | |||||
| int ElementCeil(int8_t *input, int8_t *output, int element_size, ArithSelfQuantArg para) { | |||||
| if (para.in_args_.scale_ == para.out_args_.scale_ && para.in_args_.zp_ == para.out_args_.zp_) { | |||||
| for (int i = 0; i < element_size; i++) { | |||||
| output[i] = ceil(input[i]); | |||||
| } | |||||
| } else { | |||||
| float in_scale = para.in_args_.scale_; | |||||
| int32_t in_zp = para.in_args_.zp_; | |||||
| float out_scale = para.out_args_.scale_; | |||||
| int32_t out_zp = para.out_args_.zp_; | |||||
| float bias = -in_zp * in_scale; | |||||
| for (int i = 0; i < element_size; i++) { | |||||
| int32_t output_tmp = round(ceil(input[i] * in_scale + bias) / out_scale) + out_zp; | |||||
| if (output_tmp > para.output_activation_max_) { | |||||
| output[i] = para.output_activation_max_; | |||||
| } else if (output_tmp < para.output_activation_min_) { | |||||
| output[i] = para.output_activation_min_; | |||||
| } else { | |||||
| output[i] = static_cast<int8_t>(output_tmp); | |||||
| } | |||||
| } | |||||
| } | |||||
| return OPCLIB_OK; | |||||
| } | |||||
| @@ -0,0 +1,32 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARITHMETIC_SELF_INT8_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARITHMETIC_SELF_INT8_H_ | |||||
| #ifdef ENABLE_NEON | |||||
| #include <arm_neon.h> | |||||
| #endif | |||||
| #include "src/runtime/kernel/arm/opclib/op_base.h" | |||||
| #include "src/runtime/kernel/arm/opclib/errorcode.h" | |||||
| int ElementRound(int8_t *input, int8_t *output, int element_size, ArithSelfQuantArg para); | |||||
| int ElementFloor(int8_t *input, int8_t *output, int element_size, ArithSelfQuantArg para); | |||||
| int ElementCeil(int8_t *input, int8_t *output, int number, ArithSelfQuantArg para); | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARITHMETIC_SELF_INT8_H_ | |||||
| @@ -83,6 +83,13 @@ struct CropQuantArg { | |||||
| int output_activation_max_; | int output_activation_max_; | ||||
| }; | }; | ||||
| struct ArithSelfQuantArg { | |||||
| QuantArg in_args_; | |||||
| QuantArg out_args_; | |||||
| int output_activation_min_; | |||||
| int output_activation_max_; | |||||
| }; | |||||
| void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift); | void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift); | ||||
| inline void QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t *quantized_multiplier, | inline void QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t *quantized_multiplier, | ||||
| @@ -0,0 +1,386 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <iostream> | |||||
| #include "utils/log_adapter.h" | |||||
| #include "common/common_test.h" | |||||
| #include "mindspore/lite/src/runtime/kernel/arm/opclib/arithmetic_self_parameter.h" | |||||
| #include "mindspore/lite/src/kernel_registry.h" | |||||
| #include "mindspore/lite/src/lite_kernel.h" | |||||
| #include "mindspore/lite/src/ir/tensor.h" | |||||
| namespace mindspore { | |||||
| class TestArithmeticSelfInt8 : public mindspore::Common { | |||||
| public: | |||||
| TestArithmeticSelfInt8() {} | |||||
| }; | |||||
| TEST_F(TestArithmeticSelfInt8, floor_quant0_thread2) { | |||||
| std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| std::vector<int> shape1 = {2, 3, 2}; | |||||
| std::vector<int8_t *> input(1, nullptr); | |||||
| input[0] = input1.data(); | |||||
| const int output_size = 12; | |||||
| int8_t output[12]; | |||||
| std::vector<int> output_shape = {2, 3, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 1.0; | |||||
| input_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1.0; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| TypeId tid_int8 = kNumberTypeInt8; | |||||
| lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor; | |||||
| input_tensor1->SetData(input1.data()); | |||||
| input_tensor1->set_shape(shape1); | |||||
| input_tensor1->AddQuantParam(input_quant_arg); | |||||
| input_tensor1->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor(1); | |||||
| inputs_tensor[0] = input_tensor1; | |||||
| lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor; | |||||
| output0_tensor->SetData(output); | |||||
| output0_tensor->set_shape(output_shape); | |||||
| output0_tensor->AddQuantParam(output_quant_arg); | |||||
| output0_tensor->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor(1); | |||||
| outputs_tensor[0] = output0_tensor; | |||||
| ArithmeticSelfParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Floor; | |||||
| lite::Context *ctx = new lite::Context; | |||||
| ctx->threadNum = 2; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Floor}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor->shape(); | |||||
| ASSERT_EQ(output_tensor_shape, output_shape); | |||||
| kernel->Run(); | |||||
| std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| PrintData("output data", output, output_size); | |||||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||||
| input_tensor1->SetData(nullptr); | |||||
| output0_tensor->SetData(nullptr); | |||||
| delete input_tensor1; | |||||
| delete output0_tensor; | |||||
| delete ctx; | |||||
| } | |||||
| TEST_F(TestArithmeticSelfInt8, floor_quant1_thread2) { | |||||
| std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| std::vector<int> shape1 = {2, 3, 2}; | |||||
| std::vector<int8_t *> input(1, nullptr); | |||||
| input[0] = input1.data(); | |||||
| const int output_size = 12; | |||||
| int8_t output[12]; | |||||
| std::vector<int> output_shape = {2, 3, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 0.8; | |||||
| input_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1.5; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| TypeId tid_int8 = kNumberTypeInt8; | |||||
| lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor; | |||||
| input_tensor1->SetData(input1.data()); | |||||
| input_tensor1->set_shape(shape1); | |||||
| input_tensor1->AddQuantParam(input_quant_arg); | |||||
| input_tensor1->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor(1); | |||||
| inputs_tensor[0] = input_tensor1; | |||||
| lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor; | |||||
| output0_tensor->SetData(output); | |||||
| output0_tensor->set_shape(output_shape); | |||||
| output0_tensor->AddQuantParam(output_quant_arg); | |||||
| output0_tensor->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor(1); | |||||
| outputs_tensor[0] = output0_tensor; | |||||
| ArithmeticSelfParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Floor; | |||||
| lite::Context *ctx = new lite::Context; | |||||
| ctx->threadNum = 2; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Floor}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor->shape(); | |||||
| ASSERT_EQ(output_tensor_shape, output_shape); | |||||
| kernel->Run(); | |||||
| std::vector<int8_t> except_result = {0, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6}; | |||||
| PrintData("output data", output, output_size); | |||||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||||
| input_tensor1->SetData(nullptr); | |||||
| output0_tensor->SetData(nullptr); | |||||
| delete input_tensor1; | |||||
| delete output0_tensor; | |||||
| delete ctx; | |||||
| } | |||||
| TEST_F(TestArithmeticSelfInt8, round_quant0_thread2) { | |||||
| std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| std::vector<int> shape1 = {2, 3, 2}; | |||||
| std::vector<int8_t *> input(1, nullptr); | |||||
| input[0] = input1.data(); | |||||
| const int output_size = 12; | |||||
| int8_t output[12]; | |||||
| std::vector<int> output_shape = {2, 3, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 1.0; | |||||
| input_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1.0; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| TypeId tid_int8 = kNumberTypeInt8; | |||||
| lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor; | |||||
| input_tensor1->SetData(input1.data()); | |||||
| input_tensor1->set_shape(shape1); | |||||
| input_tensor1->AddQuantParam(input_quant_arg); | |||||
| input_tensor1->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor(1); | |||||
| inputs_tensor[0] = input_tensor1; | |||||
| lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor; | |||||
| output0_tensor->SetData(output); | |||||
| output0_tensor->set_shape(output_shape); | |||||
| output0_tensor->AddQuantParam(output_quant_arg); | |||||
| output0_tensor->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor(1); | |||||
| outputs_tensor[0] = output0_tensor; | |||||
| ArithmeticSelfParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Round; | |||||
| lite::Context *ctx = new lite::Context; | |||||
| ctx->threadNum = 2; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Floor}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor->shape(); | |||||
| ASSERT_EQ(output_tensor_shape, output_shape); | |||||
| kernel->Run(); | |||||
| std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| PrintData("output data", output, output_size); | |||||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||||
| input_tensor1->SetData(nullptr); | |||||
| output0_tensor->SetData(nullptr); | |||||
| delete input_tensor1; | |||||
| delete output0_tensor; | |||||
| delete ctx; | |||||
| } | |||||
| TEST_F(TestArithmeticSelfInt8, round_quant1_thread2) { | |||||
| std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| std::vector<int> shape1 = {2, 3, 2}; | |||||
| std::vector<int8_t *> input(1, nullptr); | |||||
| input[0] = input1.data(); | |||||
| const int output_size = 12; | |||||
| int8_t output[12]; | |||||
| std::vector<int> output_shape = {2, 3, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 0.8; | |||||
| input_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1.5; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| TypeId tid_int8 = kNumberTypeInt8; | |||||
| lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor; | |||||
| input_tensor1->SetData(input1.data()); | |||||
| input_tensor1->set_shape(shape1); | |||||
| input_tensor1->AddQuantParam(input_quant_arg); | |||||
| input_tensor1->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor(1); | |||||
| inputs_tensor[0] = input_tensor1; | |||||
| lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor; | |||||
| output0_tensor->SetData(output); | |||||
| output0_tensor->set_shape(output_shape); | |||||
| output0_tensor->AddQuantParam(output_quant_arg); | |||||
| output0_tensor->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor(1); | |||||
| outputs_tensor[0] = output0_tensor; | |||||
| ArithmeticSelfParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Round; | |||||
| lite::Context *ctx = new lite::Context; | |||||
| ctx->threadNum = 2; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Floor}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor->shape(); | |||||
| ASSERT_EQ(output_tensor_shape, output_shape); | |||||
| kernel->Run(); | |||||
| std::vector<int8_t> except_result = {1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7}; | |||||
| PrintData("output data", output, output_size); | |||||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||||
| input_tensor1->SetData(nullptr); | |||||
| output0_tensor->SetData(nullptr); | |||||
| delete input_tensor1; | |||||
| delete output0_tensor; | |||||
| delete ctx; | |||||
| } | |||||
| TEST_F(TestArithmeticSelfInt8, ceil_quant0_thread2) { | |||||
| std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| std::vector<int> shape1 = {2, 3, 2}; | |||||
| std::vector<int8_t *> input(1, nullptr); | |||||
| input[0] = input1.data(); | |||||
| const int output_size = 12; | |||||
| int8_t output[12]; | |||||
| std::vector<int> output_shape = {2, 3, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 1.0; | |||||
| input_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1.0; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| TypeId tid_int8 = kNumberTypeInt8; | |||||
| lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor; | |||||
| input_tensor1->SetData(input1.data()); | |||||
| input_tensor1->set_shape(shape1); | |||||
| input_tensor1->AddQuantParam(input_quant_arg); | |||||
| input_tensor1->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor(1); | |||||
| inputs_tensor[0] = input_tensor1; | |||||
| lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor; | |||||
| output0_tensor->SetData(output); | |||||
| output0_tensor->set_shape(output_shape); | |||||
| output0_tensor->AddQuantParam(output_quant_arg); | |||||
| output0_tensor->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor(1); | |||||
| outputs_tensor[0] = output0_tensor; | |||||
| ArithmeticSelfParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Ceil; | |||||
| lite::Context *ctx = new lite::Context; | |||||
| ctx->threadNum = 2; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Floor}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor->shape(); | |||||
| ASSERT_EQ(output_tensor_shape, output_shape); | |||||
| kernel->Run(); | |||||
| std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| PrintData("output data", output, output_size); | |||||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||||
| input_tensor1->SetData(nullptr); | |||||
| output0_tensor->SetData(nullptr); | |||||
| delete input_tensor1; | |||||
| delete output0_tensor; | |||||
| delete ctx; | |||||
| } | |||||
| TEST_F(TestArithmeticSelfInt8, ceil_quant1_thread2) { | |||||
| std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||||
| std::vector<int> shape1 = {2, 3, 2}; | |||||
| std::vector<int8_t *> input(1, nullptr); | |||||
| input[0] = input1.data(); | |||||
| const int output_size = 12; | |||||
| int8_t output[12]; | |||||
| std::vector<int> output_shape = {2, 3, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 0.8; | |||||
| input_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1.5; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| TypeId tid_int8 = kNumberTypeInt8; | |||||
| lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor; | |||||
| input_tensor1->SetData(input1.data()); | |||||
| input_tensor1->set_shape(shape1); | |||||
| input_tensor1->AddQuantParam(input_quant_arg); | |||||
| input_tensor1->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor(1); | |||||
| inputs_tensor[0] = input_tensor1; | |||||
| lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor; | |||||
| output0_tensor->SetData(output); | |||||
| output0_tensor->set_shape(output_shape); | |||||
| output0_tensor->AddQuantParam(output_quant_arg); | |||||
| output0_tensor->set_data_type(tid_int8); | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor(1); | |||||
| outputs_tensor[0] = output0_tensor; | |||||
| ArithmeticSelfParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Ceil; | |||||
| lite::Context *ctx = new lite::Context; | |||||
| ctx->threadNum = 2; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Floor}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor->shape(); | |||||
| ASSERT_EQ(output_tensor_shape, output_shape); | |||||
| kernel->Run(); | |||||
| std::vector<int8_t> except_result = {1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7}; | |||||
| PrintData("output data", output, output_size); | |||||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||||
| input_tensor1->SetData(nullptr); | |||||
| output0_tensor->SetData(nullptr); | |||||
| delete input_tensor1; | |||||
| delete output0_tensor; | |||||
| delete ctx; | |||||
| } | |||||
| } // namespace mindspore | |||||