Merge pull request !1757 from lihongkang/lhk_mastertags/v0.5.0-beta
| @@ -793,6 +793,18 @@ def get_bprop_asinh(self): | |||
| return bprop | |||
| @bprop_getters.register(P.Sinh) | |||
| def get_bprop_sinh(self): | |||
| """Grad definition for `Sinh` operation.""" | |||
| cosh = P.Cosh() | |||
| def bprop(x, out, dout): | |||
| dx = cosh(x) * dout | |||
| return (dx,) | |||
| return bprop | |||
| @bprop_getters.register(P.Cos) | |||
| def get_bprop_cos(self): | |||
| """Grad definition for `Cos` operation.""" | |||
| @@ -830,6 +842,18 @@ def get_bprop_acosh(self): | |||
| return bprop | |||
| @bprop_getters.register(P.Cosh) | |||
| def get_bprop_cosh(self): | |||
| """Grad definition for `Cosh` operation.""" | |||
| sinh = P.Sinh() | |||
| def bprop(x, out, dout): | |||
| dx = sinh(x) * dout | |||
| return (dx,) | |||
| return bprop | |||
| @bprop_getters.register(P.Abs) | |||
| def get_bprop_abs(self): | |||
| """Grad definition for `Abs` operation.""" | |||
| @@ -227,3 +227,5 @@ from .asinh_grad import _asinh_grad_tbe | |||
| from .atan import _atan_tbe | |||
| from .atan_grad import _atan_grad_tbe | |||
| from .atanh import _atanh_tbe | |||
| from .cosh import _cosh_tbe | |||
| from .sinh import _sinh_tbe | |||
| @@ -0,0 +1,37 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Cosh op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| cosh_op_info = TBERegOp("Cosh") \ | |||
| .fusion_type("ELEMWISE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("cosh.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("cosh") \ | |||
| .partial_flag(True) \ | |||
| .op_pattern("formatAgnostic") \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .output(0, "y", True, "required", "all") \ | |||
| .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ | |||
| .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ | |||
| .get_op_info() | |||
| @op_info_register(cosh_op_info) | |||
| def _cosh_tbe(): | |||
| """Cosh TBE register""" | |||
| return | |||
| @@ -0,0 +1,37 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Sinh op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| sinh_op_info = TBERegOp("Sinh") \ | |||
| .fusion_type("ELEMWISE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("sinh.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("sinh") \ | |||
| .partial_flag(True) \ | |||
| .op_pattern("formatAgnostic") \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .output(0, "y", True, "required", "all") \ | |||
| .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ | |||
| .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ | |||
| .get_op_info() | |||
| @op_info_register(sinh_op_info) | |||
| def _sinh_tbe(): | |||
| """Sinh TBE register""" | |||
| return | |||
| @@ -40,7 +40,8 @@ from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSumm | |||
| from .control_ops import ControlDepend, GeSwitch, Merge | |||
| from .inner_ops import ScalarCast | |||
| from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, BitwiseXor, | |||
| from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, | |||
| BitwiseXor, | |||
| ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | |||
| Cos, Div, Equal, EqualCount, Exp, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh, | |||
| Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, | |||
| @@ -50,7 +51,8 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2 | |||
| NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus, | |||
| Reciprocal, CumSum, | |||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | |||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh) | |||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh) | |||
| from .random_ops import (RandomChoiceWithMask) | |||
| from .nn_ops import (LSTM, SGD, Adam, ApplyMomentum, BatchNorm, | |||
| BiasAdd, Conv2D, | |||
| @@ -245,6 +247,7 @@ __all__ = [ | |||
| 'Asinh', | |||
| "PReLU", | |||
| "Cos", | |||
| "Cosh", | |||
| "ACos", | |||
| "Diag", | |||
| "DiagPart", | |||
| @@ -253,6 +256,7 @@ __all__ = [ | |||
| 'AssignAdd', | |||
| 'AssignSub', | |||
| "Sin", | |||
| "Sinh", | |||
| "Asin", | |||
| "LSTM", | |||
| "Abs", | |||
| @@ -1359,6 +1359,35 @@ class Acosh(PrimitiveWithInfer): | |||
| return x_dtype | |||
| class Cosh(PrimitiveWithInfer): | |||
| """ | |||
| Computes hyperbolic cosine of input element-wise. | |||
| Inputs: | |||
| - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||
| Outputs: | |||
| Tensor, has the same shape as `input_x`. | |||
| Examples: | |||
| >>> cosh = P.Cosh() | |||
| >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | |||
| >>> output = cosh(input_x) | |||
| [1.0289385 1.364684 1.048436 1.4228927] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init Cosh""" | |||
| def infer_shape(self, x_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name) | |||
| return x_dtype | |||
| class Asinh(PrimitiveWithInfer): | |||
| """ | |||
| Compute inverse hyperbolic cosine of x element-wise. | |||
| @@ -1376,7 +1405,6 @@ class Asinh(PrimitiveWithInfer): | |||
| [-2.3212, 1.1976, 1.8184, 5.2983] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init Asinh""" | |||
| @@ -1389,6 +1417,35 @@ class Asinh(PrimitiveWithInfer): | |||
| return x_dtype | |||
| class Sinh(PrimitiveWithInfer): | |||
| """ | |||
| Computes hyperbolic sine of input element-wise. | |||
| Inputs: | |||
| - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||
| Outputs: | |||
| Tensor, has the same shape as `input_x`. | |||
| Examples: | |||
| >>> sinh = P.Sinh() | |||
| >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32) | |||
| >>> output = sinh(input_x) | |||
| [0.6604918 0.28367308 0.44337422 0.6604918] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init Sinh""" | |||
| def infer_shape(self, x_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name) | |||
| return x_dtype | |||
| class _LogicBinaryOp(_BinaryOp): | |||
| """ | |||
| Define logic binary operators. | |||
| @@ -128,7 +128,7 @@ class NetForFlattenComposed(nn.Cell): | |||
| self.flatten = P.Flatten() | |||
| def construct(self, x, y): | |||
| return self.flatten(x+x) + y | |||
| return self.flatten(x + x) + y | |||
| class ArgmaxNet(nn.Cell): | |||
| @@ -281,6 +281,7 @@ class ApplyRMSNet(nn.Cell): | |||
| out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon) | |||
| return out | |||
| test_case_math_ops = [ | |||
| ('BitwiseAnd', { | |||
| 'block': P.BitwiseAnd(), | |||
| @@ -732,6 +733,14 @@ test_case_math_ops = [ | |||
| 'block': P.Atanh(), | |||
| 'desc_inputs': [[2, 3]], | |||
| 'desc_bprop': [[2, 3]]}), | |||
| ('Cosh', { | |||
| 'block': P.Cosh(), | |||
| 'desc_inputs': [[3, 4, 5]], | |||
| 'desc_bprop': [[3, 4, 5]]}), | |||
| ('Sinh', { | |||
| 'block': P.Sinh(), | |||
| 'desc_inputs': [[3, 4, 5]], | |||
| 'desc_bprop': [[3, 4, 5]]}), | |||
| ] | |||
| test_case_nn_ops = [ | |||
| @@ -1301,7 +1310,7 @@ test_case_array_ops = [ | |||
| 'desc_inputs': [(Tensor(np.array([1], np.float32)), | |||
| Tensor(np.array([1], np.float32)), | |||
| Tensor(np.array([1], np.float32)))], | |||
| 'desc_bprop': [[3,]]}), | |||
| 'desc_bprop': [[3, ]]}), | |||
| ('Pack_0', { | |||
| 'block': NetForPackInput(P.Pack()), | |||
| 'desc_inputs': [[2, 2], [2, 2], [2, 2]], | |||
| @@ -1464,7 +1473,7 @@ test_case = functools.reduce(lambda x, y: x + y, test_case_lists) | |||
| test_exec_case = test_case | |||
| test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or | |||
| 'backward' not in x[1]['skip'], test_case) | |||
| 'backward' not in x[1]['skip'], test_case) | |||
| @non_graph_engine | |||