|
|
|
@@ -191,8 +191,8 @@ class ForwardValueAndGrad(Cell): |
|
|
|
The backward graph will be created in the gradient function to calculating gradient. |
|
|
|
|
|
|
|
Args: |
|
|
|
network (Cell): The training network. The network only supports single output. |
|
|
|
weights (ParameterTuple): The parameters of the training network that need to calculate the gradient |
|
|
|
network (Cell): The training network. |
|
|
|
weights (ParameterTuple): The parameters of the training network that need to calculate the gradient. |
|
|
|
get_all (bool): If True, get all the gradients with respect to inputs. Default: False. |
|
|
|
get_by_list (bool): If True, get all the gradients with respect to Parameter variables. |
|
|
|
If get_all and get_by_list are both False, get the gradient with respect to first input. |
|
|
|
@@ -206,8 +206,8 @@ class ForwardValueAndGrad(Cell): |
|
|
|
the input parameter. |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **(\*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`. |
|
|
|
- **(\*sens)** - A sensitivity (gradient with respect to output) as the input of backpropagation. |
|
|
|
- **(\*inputs)** (Tuple(Tensor...)) - Tuple of inputs with shape :math:`(N, \ldots)`. |
|
|
|
- **(sens)** - A sensitivity (gradient with respect to output) as the input of backpropagation. |
|
|
|
If network has single output, the sens is a tensor. |
|
|
|
If network has multiple outputs, the sens is the tuple(tensor). |
|
|
|
|
|
|
|
@@ -216,37 +216,33 @@ class ForwardValueAndGrad(Cell): |
|
|
|
- **gradients** (tuple(tensor)) - The gradients of network parameters and inputs. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU````CPU`` |
|
|
|
``Ascend`` ``GPU`` ``CPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> inputs = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32)) |
|
|
|
>>> labels = Tensor(np.ones([32]).astype(np.int32)) |
|
|
|
>>> net = Net() |
|
|
|
>>> weights = ParameterTuple(filter(lambda x: x.requires_grad, net.get_parameters())) |
|
|
|
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
>>> #1) Using the WithLossCell existing provide |
|
|
|
>>> loss_net = nn.WithLossCell(net, loss_fn) |
|
|
|
>>> forward_value_and_grad = nn.ForwardValueAndGrad(loss_net, weights=weights, get_by_list=True) |
|
|
|
>>> loss, grads = forward_value_and_grad(inputs, labels) |
|
|
|
>>> |
|
|
|
>>> #2) Using user-defined WithLossCell |
|
|
|
>>> class MyWithLossCell(Cell): |
|
|
|
... def __init__(self, backbone, loss_fn): |
|
|
|
... super(MyWithLossCell, self).__init__(auto_prefix=False) |
|
|
|
... self._backbone = backbone |
|
|
|
... self._loss_fn = loss_fn |
|
|
|
>>> class Net(nn.Cell): |
|
|
|
... def __init__(self): |
|
|
|
... super(Net, self).__init__() |
|
|
|
... self.weight = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="weight") |
|
|
|
... self.matmul = P.MatMul() |
|
|
|
... |
|
|
|
... def construct(self, x, y, label): |
|
|
|
... out = self._backbone(x, y) |
|
|
|
... return self._loss_fn(out, label) |
|
|
|
... def construct(self, x): |
|
|
|
... out = self.matmul(x, self.weight) |
|
|
|
... return x |
|
|
|
... |
|
|
|
... @property |
|
|
|
... def backbone_network(self): |
|
|
|
... return self._backbone |
|
|
|
... |
|
|
|
>>> loss_net = MyWithLossCell(net, loss_fn) |
|
|
|
>>> forward_value_and_grad = nn.ForwardValueAndGrad(loss_net, weights=weights, get_by_list=True) |
|
|
|
>>> loss, grads = forward_value_and_grad(inputs, labels) |
|
|
|
>>> net = Net() |
|
|
|
>>> criterion = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
>>> net_with_criterion = WithLossCell(net, criterion) |
|
|
|
>>> weight = ParameterTuple(net.trainable_params()) |
|
|
|
>>> train_network = nn.ForwardValueAndGrad(net_with_criterion, weights=weight, get_all=True, get_by_list=True) |
|
|
|
>>> inputs = Tensor(np.ones([1, 2]).astype(np.float32)) |
|
|
|
>>> labels = Tensor(np.zeros([1, 2]).astype(np.float32)) |
|
|
|
>>> result = train_network(inputs, labels) |
|
|
|
>>> print(result) |
|
|
|
(Tensor(shape=[1], dtype=Float32, value=[0]), ((Tensor(shape=[1, 2], dtype=Float32, value= |
|
|
|
[[0.5, 0.5]]), Tensor(shape=[1, 2], dtype=Float32, value= |
|
|
|
[[0, 0]])), (Tensor(shape=[2, 2], dtype=Float32, value= |
|
|
|
[[0, 0], |
|
|
|
[0, 0]]),))) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, network, weights=None, get_all=False, get_by_list=False, sens_param=False): |
|
|
|
|