| @@ -21,12 +21,12 @@ from .parser import (Parser, create_obj_instance, generate_scope, | |||
| get_class_member_namespace_symbol, create_slice_obj, | |||
| get_dataclass_attributes, get_dataclass_methods, get_obj_id, | |||
| get_module_namespace, get_obj_type, get_object_key, | |||
| get_default_input, get_parse_method_of_class, get_scope_name, | |||
| get_parse_method_of_class, get_scope_name, | |||
| is_class_member, parse_cb, resolve_symbol) | |||
| from .serialize import * | |||
| __all__ = ['parse_cb', 'get_parse_method_of_class', 'get_bprop_method_of_class', 'resolve_symbol', | |||
| 'get_object_key', 'get_default_input', 'get_class_instance_type', 'is_class_member', | |||
| 'get_object_key', 'get_class_instance_type', 'is_class_member', | |||
| 'get_obj_type', 'get_obj_id', 'create_obj_instance', 'get_module_namespace', | |||
| 'get_class_member_namespace_symbol', 'get_obj_id', 'Parser', 'get_dataclass_attributes', | |||
| 'get_dataclass_methods', 'dump_obj', 'load_obj', 'get_dataclass_methods', 'get_scope_name', | |||
| @@ -206,16 +206,6 @@ def get_object_key(obj): | |||
| return obj_id, obj_key | |||
| def get_default_input(obj): | |||
| if hasattr(obj, '__parameter__'): | |||
| return obj.default_input | |||
| if isinstance(obj, tuple): | |||
| convert = lambda x: x.default_input if hasattr(x, '__parameter__') else x | |||
| args = tuple(convert(x) for x in obj) | |||
| return args | |||
| return obj | |||
| def is_class_member(node): | |||
| """Check the attr is class member variable.""" | |||
| type_ = node.__class__.__name__ | |||
| @@ -76,7 +76,7 @@ GraphId AscendInferenceSession::CompileGraph(NotNull<FuncGraphPtr> func_graph) { | |||
| if (AnfAlgo::IsParameterWeight(pk_node)) { | |||
| const auto ¶m_value = pk_node->default_param(); | |||
| MS_EXCEPTION_IF_NULL(param_value); | |||
| auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_value->value()); | |||
| auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_value); | |||
| MS_EXCEPTION_IF_NULL(tensor); | |||
| if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0), | |||
| LongToSize(tensor->data().nbytes()), tensor->data_type(), | |||
| @@ -42,12 +42,12 @@ | |||
| namespace mindspore { | |||
| namespace session { | |||
| static std::shared_ptr<std::map<ParamValuePtr, ParameterPtr>> python_paras; | |||
| static std::shared_ptr<std::map<ValuePtr, ParameterPtr>> python_paras; | |||
| void ClearPythonParasMap() { python_paras = nullptr; } | |||
| namespace { | |||
| const int kSummaryGetItem = 2; | |||
| ParamValuePtr GetParamDefaultValue(const AnfNodePtr &node) { | |||
| ValuePtr GetParamDefaultValue(const AnfNodePtr &node) { | |||
| if (node == nullptr) { | |||
| return nullptr; | |||
| } | |||
| @@ -209,8 +209,7 @@ ParameterPtr ConstructRunOpParameter(const std::shared_ptr<KernelGraph> &graph, | |||
| auto param = graph->NewParameter(); | |||
| MS_EXCEPTION_IF_NULL(param); | |||
| if (tensor_mask == kParameterWeightTensorMask) { | |||
| auto param_value_new = std::make_shared<ParamValue>(); | |||
| param->set_default_param(param_value_new); | |||
| param->set_default_param(input_tensor); | |||
| } | |||
| // set the kernel info of parameter | |||
| auto kernel_build_info_builder = std::make_shared<kernel::KernelBuildInfo::KernelBuildInfoBuilder>(); | |||
| @@ -390,7 +389,7 @@ ParameterPtr SessionBasic::CreateNewParameterFromParameter(const AnfNodePtr &anf | |||
| ParameterPtr new_parameter = nullptr; | |||
| // if parameter's python parameter has been exist a backend parameter, reuse the exist parameter | |||
| if (python_paras == nullptr) { | |||
| python_paras = std::make_shared<std::map<ParamValuePtr, ParameterPtr>>(); | |||
| python_paras = std::make_shared<std::map<ValuePtr, ParameterPtr>>(); | |||
| } | |||
| auto iter = python_paras->find(param_value); | |||
| if (iter != python_paras->end()) { | |||
| @@ -667,7 +666,7 @@ ParameterPtr SessionBasic::CreateNewParameter(const AnfNodePtr &anf, KernelGraph | |||
| auto param_value = GetParamDefaultValue(anf); | |||
| ParameterPtr new_parameter = nullptr; | |||
| if (python_paras == nullptr) { | |||
| python_paras = std::make_shared<std::map<ParamValuePtr, ParameterPtr>>(); | |||
| python_paras = std::make_shared<std::map<ValuePtr, ParameterPtr>>(); | |||
| } | |||
| auto iter = python_paras->find(param_value); | |||
| if (iter != python_paras->end()) { | |||
| @@ -1670,7 +1670,7 @@ class IrParser { | |||
| // load parameter default value from serialized file | |||
| py::object default_obj = LoadObject(lexer_.GetTokenText()); | |||
| auto param_value_new = py::cast<ParamValuePtr>(default_obj); | |||
| auto param_value_new = py::cast<tensor::TensorPtr>(default_obj); | |||
| param->set_default_param(param_value_new); | |||
| tok = lexer_.GetNextToken(); | |||
| @@ -318,8 +318,9 @@ void BaseDigraph::FuncGraphParameters(const FuncGraphPtr &key) { | |||
| buffer_ << parameter->ToString(); | |||
| auto param = parameter->cast<ParameterPtr>(); | |||
| if (param->has_default()) { | |||
| auto tensor = param->default_param()->value(); | |||
| if (tensor) { | |||
| auto tensor_v = param->default_param(); | |||
| if (tensor_v && tensor_v->isa<tensor::Tensor>()) { | |||
| auto tensor = tensor_v->cast<tensor::TensorPtr>(); | |||
| auto &shape = tensor->shape(); | |||
| std::ostringstream shape_str; | |||
| std::copy(shape.begin(), shape.end(), std::ostream_iterator<int>(shape_str, ",")); | |||
| @@ -38,7 +38,12 @@ bool ParameterRequireGrad(const AnfNodePtr &node_ptr) { | |||
| if (!para_ptr->has_default()) { | |||
| return false; | |||
| } | |||
| return para_ptr->default_param()->requires_grad(); | |||
| auto obj = py::cast(para_ptr->default_param()); | |||
| auto param_value = py::cast<ParamValuePtr>(obj.attr("_value")); | |||
| if (param_value == nullptr) { | |||
| return false; | |||
| } | |||
| return param_value->requires_grad(); | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -41,6 +41,7 @@ | |||
| #include "frontend/parallel/context.h" | |||
| #include "frontend/parallel/ops_info/tmp_identity_info.h" | |||
| #include "frontend/parallel/ops_info/reshape_info.h" | |||
| #include "frontend/parallel/graph_util/node_info.h" | |||
| #include "frontend/parallel/step_parallel.h" | |||
| #include "frontend/parallel/strategy_checkpoint/parallel_strategy_checkpoint.h" | |||
| #include "pipeline/jit/parse/python_adapter.h" | |||
| @@ -122,12 +123,7 @@ std::vector<bool> ExtractInputParameterByNode(const CNodePtr &node) { | |||
| if (input->isa<Parameter>()) { | |||
| auto input_parameter = input->cast<ParameterPtr>(); | |||
| if (input_parameter->has_default()) { | |||
| bool requires_grad = input_parameter->default_param()->requires_grad(); | |||
| is_parameter.push_back(requires_grad); | |||
| } else { | |||
| is_parameter.push_back(false); | |||
| } | |||
| is_parameter.push_back(ParameterRequireGrad(input_parameter)); | |||
| } else if (input->isa<CNode>() || IsValueNode<tensor::Tensor>(input) || IsValueNode<RefKey>(input)) { | |||
| is_parameter.push_back(false); | |||
| } | |||
| @@ -798,12 +794,7 @@ void AugmentCostGraph(const std::vector<AnfNodePtr> &all_nodes) { | |||
| std::vector<bool> is_parameter; | |||
| auto casted_target_parameter = target_parameter->cast<ParameterPtr>(); | |||
| MS_EXCEPTION_IF_NULL(casted_target_parameter); | |||
| if (casted_target_parameter->has_default()) { | |||
| bool requires_grad = casted_target_parameter->default_param()->requires_grad(); | |||
| is_parameter.push_back(requires_grad); | |||
| } else { | |||
| is_parameter.push_back(false); | |||
| } | |||
| is_parameter.push_back(ParameterRequireGrad(casted_target_parameter)); | |||
| if (tmp_identity_ptr->set_is_parameter(is_parameter) != SUCCESS) { | |||
| MS_LOG(EXCEPTION) << "Setting parameter for TmpIdentityInfo failed"; | |||
| } | |||
| @@ -1295,11 +1295,8 @@ void CoverSliceShape(const FuncGraphPtr &root) { | |||
| g_RefMap.clear(); | |||
| } | |||
| bool ParameterIsCloned(const FuncGraphPtr &root, const AnfNodePtr ¶meter_node) { | |||
| MS_EXCEPTION_IF_NULL(root); | |||
| bool ParameterIsCloned(const AnfNodePtr ¶meter_node) { | |||
| MS_EXCEPTION_IF_NULL(parameter_node); | |||
| FuncGraphManagerPtr manager = root->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| auto cloned_parameter = parameter_node->cast<ParameterPtr>(); | |||
| MS_EXCEPTION_IF_NULL(cloned_parameter); | |||
| @@ -1307,8 +1304,12 @@ bool ParameterIsCloned(const FuncGraphPtr &root, const AnfNodePtr ¶meter_nod | |||
| if (!cloned_parameter->has_default()) { | |||
| return false; | |||
| } | |||
| bool cloned = cloned_parameter->default_param()->cloned(); | |||
| auto obj = py::cast(cloned_parameter->default_param()); | |||
| auto param_value = py::cast<ParamValuePtr>(obj.attr("_value")); | |||
| if (param_value == nullptr) { | |||
| return false; | |||
| } | |||
| bool cloned = param_value->cloned(); | |||
| if (!cloned) { | |||
| return false; | |||
| } | |||
| @@ -1324,12 +1325,16 @@ void SetClonedTensorShapeForOptimizer(const FuncGraphPtr &root) { | |||
| auto cloned_parameter = cloned_parameter_node->cast<ParameterPtr>(); | |||
| MS_EXCEPTION_IF_NULL(cloned_parameter); | |||
| if (!ParameterIsCloned(root, cloned_parameter_node)) { | |||
| if (!ParameterIsCloned(cloned_parameter_node)) { | |||
| continue; | |||
| } | |||
| auto obj = py::cast(cloned_parameter->default_param()); | |||
| auto param_value = py::cast<ParamValuePtr>(obj.attr("_value")); | |||
| if (param_value == nullptr) { | |||
| continue; | |||
| } | |||
| // get the cloned index | |||
| int32_t cloned_index = cloned_parameter->default_param()->cloned_index(); | |||
| int32_t cloned_index = param_value->cloned_index(); | |||
| // find the be cloned parameter | |||
| bool found_be_cloned_parameter = false; | |||
| @@ -1344,12 +1349,18 @@ void SetClonedTensorShapeForOptimizer(const FuncGraphPtr &root) { | |||
| } | |||
| const auto ¶m_value_cloned = be_cloned_parameter->default_param(); | |||
| if (!param_value_cloned->be_cloned()) { | |||
| auto obj_in = py::cast(param_value_cloned); | |||
| auto param_value_in = py::cast<ParamValuePtr>(obj_in.attr("_value")); | |||
| if (param_value_in == nullptr) { | |||
| continue; | |||
| } | |||
| if (!param_value_in->be_cloned()) { | |||
| continue; | |||
| } | |||
| // get the be cloned index | |||
| auto &be_cloned_index = param_value_cloned->be_cloned_index(); | |||
| auto &be_cloned_index = param_value_in->be_cloned_index(); | |||
| if (std::find(be_cloned_index.begin(), be_cloned_index.end(), cloned_index) != be_cloned_index.end()) { | |||
| found_be_cloned_parameter = true; | |||
| cloned_from_parameter = be_cloned_parameter; | |||
| @@ -2103,10 +2114,7 @@ std::string NodeParameterName(const CNodePtr &node) { | |||
| if (input->isa<Parameter>()) { | |||
| auto input_parameter = input->cast<ParameterPtr>(); | |||
| if (input_parameter->has_default()) { | |||
| const auto ¶m_value = input_parameter->default_param(); | |||
| if (param_value->requires_grad()) { | |||
| return param_value->name(); | |||
| } | |||
| input_parameter->name(); | |||
| } | |||
| } | |||
| } | |||
| @@ -233,8 +233,7 @@ bool AbstractSpecializeAction(const ResourcePtr &res) { | |||
| for (const auto ¶m : func_graph->parameters()) { | |||
| auto param_node = std::static_pointer_cast<Parameter>(param); | |||
| if (param_node->has_default()) { | |||
| const auto ¶m_value = param_node->default_param(); | |||
| ValuePtr value = param_value->value(); | |||
| ValuePtr value = param_node->default_param(); | |||
| constexpr bool broaden = true; | |||
| AbstractBasePtr ptr = abstract::FromValue(value, broaden); | |||
| @@ -68,6 +68,8 @@ PYBIND11_MODULE(_c_expression, m) { | |||
| py::arg("type") = py::str("onnx_ir"), "Get graph proto string by specifying ir type.") | |||
| .def("compile", &ExecutorPy::Compile, py::arg("obj"), py::arg("args"), py::arg("phase") = py::str(""), | |||
| py::arg("use_vm") = py::bool_(false), "Compile obj by executor.") | |||
| .def("updata_param_node_default_input", &ExecutorPy::UpdataParamNodeDefaultInput, py::arg("phase"), | |||
| py::arg("params"), "Fetch the inputs of Conv or Matmul for quant export.") | |||
| .def("get_parameter_layout", &ExecutorPy::GetParameterLayout, py::arg("phase") = py::str("train"), | |||
| "Get Parameter Tensor Layout Dictionary.") | |||
| .def("get_strategy", &ExecutorPy::GetCNodeStrategy, py::arg("phase") = py::str("train"), | |||
| @@ -205,41 +205,6 @@ bool ConvertMetaFuncGraph(const py::object &obj, ValuePtr *const data, bool use_ | |||
| return true; | |||
| } | |||
| bool ConvertDataType(const py::object &obj, ValuePtr *const data) { | |||
| MS_LOG(DEBUG) << "Converting type object"; | |||
| auto typeptr = obj.cast<TypePtr>(); | |||
| if (typeptr == nullptr) { | |||
| MS_LOG(ERROR) << "Resolve TypePtr error, get ptr is null"; | |||
| return false; | |||
| } | |||
| *data = typeptr; | |||
| return true; | |||
| } | |||
| bool ConvertMetaTensor(const py::object &obj, ValuePtr *const data) { | |||
| MS_LOG(DEBUG) << "Converting MetaTensor object."; | |||
| auto m_tensor = obj.cast<MetaTensorPtr>(); | |||
| if (m_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "Resolve MetaTensor error, get ptr is null."; | |||
| return false; | |||
| } | |||
| *data = m_tensor; | |||
| return true; | |||
| } | |||
| bool ConvertTensor(const py::object &obj, ValuePtr *const data) { | |||
| MS_LOG(DEBUG) << "Converting tensor object"; | |||
| auto m_tensor = obj.cast<TensorPtr>(); | |||
| if (m_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "Resolve Tensor error, get ptr is null"; | |||
| return false; | |||
| } | |||
| *data = m_tensor; | |||
| return true; | |||
| } | |||
| bool ConvertSlice(const py::object &obj, ValuePtr *const data) { | |||
| MS_LOG(DEBUG) << "Converting slice object"; | |||
| @@ -364,11 +329,11 @@ bool ConvertData(const py::object &obj, ValuePtr *const data, bool use_signature | |||
| } else if (py::isinstance<MetaFuncGraph>(obj)) { | |||
| ret = ConvertMetaFuncGraph(obj, &converted, use_signature); | |||
| } else if (py::isinstance<Type>(obj)) { | |||
| ret = ConvertDataType(obj, &converted); | |||
| converted = obj.cast<TypePtr>(); | |||
| } else if (py::isinstance<Tensor>(obj)) { | |||
| ret = ConvertTensor(obj, &converted); | |||
| converted = obj.cast<TensorPtr>(); | |||
| } else if (py::isinstance<MetaTensor>(obj)) { | |||
| ret = ConvertMetaTensor(obj, &converted); | |||
| converted = obj.cast<MetaTensorPtr>(); | |||
| } else if (py::isinstance<EnvInstance>(obj)) { | |||
| std::shared_ptr<EnvInstance> env = obj.cast<std::shared_ptr<EnvInstance>>(); | |||
| converted = env; | |||
| @@ -85,7 +85,6 @@ const char PYTHON_PARSE_ANALYZE_SUPER[] = "analyze_super"; | |||
| const char PYTHON_PARSE_CLASS_SLICE[] = "create_slice_obj"; | |||
| const char PYTHON_PARSE_CLASS_ELLIPSIS[] = "create_ellipsis_obj"; | |||
| const char PYTHON_MOD_GET_DEFAULT_INPUT[] = "get_default_input"; | |||
| // define the common name | |||
| const char NAMED_PRIMITIVE_LEN[] = "len"; | |||
| @@ -103,10 +103,9 @@ AnfNodePtr ResolveParameterObj(const FuncGraphPtr &func_graph, const py::object | |||
| } | |||
| if (para_node == nullptr) { | |||
| auto node = top_graph->AddWeightParameter(param_name); | |||
| auto param_value = py::cast<ParamValuePtr>(python_adapter::GetPyObjAttr(obj, "_value")); | |||
| node->set_default_param(param_value); | |||
| auto value = py::cast<tensor::MetaTensorPtr>(obj); | |||
| node->set_default_param(value); | |||
| // set_abstract for parameter | |||
| ValuePtr value = param_value->value(); | |||
| constexpr bool broaden = true; | |||
| node->set_abstract(abstract::FromValue(value, broaden)); | |||
| para_node = node; | |||
| @@ -719,7 +719,11 @@ void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef | |||
| if (!param_ptr->has_default()) { | |||
| MS_LOG(EXCEPTION) << "Parameter[" << i << "] has no default param"; | |||
| } | |||
| arg_list->push_back(param_ptr->default_param()->value()); | |||
| if (!param_ptr->default_param()->isa<Tensor>()) { | |||
| MS_LOG(EXCEPTION) << "Parameter[" << param_ptr->ToString() | |||
| << "] is not initialized, need to call `.init_data()`"; | |||
| } | |||
| arg_list->push_back(param_ptr->default_param()); | |||
| } | |||
| } | |||
| } | |||
| @@ -782,6 +786,24 @@ FuncGraphPtr ExecutorPy::BuildGraph(const py::dict &init_params, const std::stri | |||
| #endif | |||
| } | |||
| void ExecutorPy::UpdataParamNodeDefaultInput(const std::string &phase, | |||
| const std::unordered_map<std::string, tensor::TensorPtr> ¶ms_value) { | |||
| FuncGraphPtr func_graph = info_[phase]->resource->func_graph(); | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| MS_LOG(DEBUG) << "UpdataParamNodeDefaultInput for func graph(" << func_graph->ToString() << ") phase(" << phase | |||
| << ")!"; | |||
| auto ¶ms = func_graph->parameters(); | |||
| for (const auto ¶m : params) { | |||
| MS_EXCEPTION_IF_NULL(param); | |||
| auto param_cast = param->cast<ParameterPtr>(); | |||
| MS_EXCEPTION_IF_NULL(param_cast); | |||
| auto iter = params_value.find(param_cast->name()); | |||
| if (iter != params_value.end()) { | |||
| param_cast->set_default_param(iter->second); | |||
| } | |||
| } | |||
| } | |||
| void ExecutorPy::RunInitGraph(const py::dict &init_params, const std::string &phase) { | |||
| #if ENABLE_GE | |||
| RunGEInitGraph(init_params, phase); | |||
| @@ -88,6 +88,8 @@ class ExecutorPy : public std::enable_shared_from_this<ExecutorPy> { | |||
| FuncGraphPtr BuildGraph(const py::dict &init_params, const std::string &phase, | |||
| const py::object &broadcast_params = {}); | |||
| void UpdataParamNodeDefaultInput(const std::string &phase, | |||
| const std::unordered_map<std::string, tensor::TensorPtr> ¶ms); | |||
| void RunInitGraph(const py::dict &init_params, const std::string &phase); | |||
| py::dict GetParameterLayout(const std::string &phase); | |||
| py::dict GetCNodeStrategy(const std::string &phase); | |||
| @@ -146,12 +146,6 @@ static std::string GetOpId(const OpExecInfoPtr &op_exec_info) { | |||
| return id; | |||
| } | |||
| py::object GetTupleObj(const py::object &obj) { | |||
| py::module mod = parse::python_adapter::GetPyModule(parse::PYTHON_MOD_PARSE_MODULE); | |||
| py::object obj_tuple = parse::python_adapter::CallPyModFn(mod, parse::PYTHON_MOD_GET_DEFAULT_INPUT, obj); | |||
| return obj_tuple; | |||
| } | |||
| std::map<SignatureEnumDType, std::vector<size_t>> GetTypeIndex(const std::vector<SignatureEnumDType> &dtypes) { | |||
| std::map<SignatureEnumDType, std::vector<size_t>> type_indexes; | |||
| for (size_t i = 0; i < dtypes.size(); ++i) { | |||
| @@ -242,7 +236,7 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tu | |||
| py::tuple input_mask(args.size()); | |||
| for (size_t i = 0; i < args.size(); ++i) { | |||
| input_mask[i] = py::hasattr(args[i], "__parameter__"); | |||
| py_args[i] = GetTupleObj(args[i]); | |||
| py_args[i] = args[i]; | |||
| } | |||
| auto signature = prim->signatures(); | |||
| std::vector<SignatureEnumDType> dtypes; | |||
| @@ -366,9 +360,6 @@ py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat | |||
| py::tuple result(op_inputs.size()); | |||
| for (size_t i = 0; i < op_inputs.size(); i++) { | |||
| py::object input = op_inputs[i]; | |||
| if (py::hasattr(input, "__parameter__")) { | |||
| input = py::getattr(input, "data"); | |||
| } | |||
| auto tensor = py::cast<tensor::TensorPtr>(input); | |||
| auto new_tensor = std::make_shared<tensor::Tensor>(tensor->data_type(), tensor->shape(), tensor->data_ptr()); | |||
| new_tensor->set_device_address(tensor->device_address()); | |||
| @@ -878,8 +869,7 @@ AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &o | |||
| if (graph_info_map_[df_builder_].param_map.count(obj_id) == 0) { | |||
| auto free_param = df_builder_->add_parameter(); | |||
| free_param->set_name(param_name); | |||
| auto free_param_new = py::cast<ParamValuePtr>(obj.attr("_value")); | |||
| free_param->set_default_param(free_param_new); | |||
| free_param->set_default_param(py::cast<tensor::TensorPtr>(obj)); | |||
| free_param->debug_info()->set_name(param_name); | |||
| MS_LOG(DEBUG) << "Top graph set free parameter " << obj_id; | |||
| graph_info_map_[df_builder_].param_map[obj_id] = free_param; | |||
| @@ -1074,8 +1064,7 @@ abstract::AbstractBasePtrList PynativeExecutor::GetArgsSpec(const py::args &args | |||
| for (const auto ¶m : df_builder_->parameters()) { | |||
| auto param_node = std::static_pointer_cast<Parameter>(param); | |||
| if (param_node->has_default()) { | |||
| const auto ¶m_value = param_node->default_param(); | |||
| ValuePtr value = param_value->value(); | |||
| ValuePtr value = param_node->default_param(); | |||
| AbstractBasePtr ptr = abstract::FromValue(value, true); | |||
| if (ptr == nullptr) { | |||
| MS_LOG(EXCEPTION) << "Args convert error"; | |||
| @@ -187,7 +187,7 @@ void IrExportBuilder::BuildParameters(const FuncGraphPtr &func_graph, onnx::Grap | |||
| onnx::TensorProto *initializer_proto = graph_proto->add_initializer(); | |||
| initializer_proto->set_name(param_name); | |||
| SetParamToTensorProto(param, initializer_proto); | |||
| auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param->default_param()->value()); | |||
| auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param->default_param()); | |||
| if (tensor) { | |||
| initializer_proto->set_raw_data(tensor->data_c(), tensor->data().nbytes()); | |||
| } | |||
| @@ -449,7 +449,7 @@ void OnnxExporter::ExportParameters(const FuncGraphPtr &func_graph, onnx::GraphP | |||
| initializer_proto->set_name(param_ptr->ToString()); | |||
| SetTensorProtoInfo(param_ptr, initializer_proto); | |||
| // set value for initializer | |||
| auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_ptr->default_param()->value()); | |||
| auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_ptr->default_param()); | |||
| if (tensor) { | |||
| initializer_proto->set_raw_data(tensor->data_c(), tensor->data().nbytes()); | |||
| } | |||
| @@ -52,7 +52,7 @@ bool GetParameterShape(const FuncGraphPtr &graph, const std::string ¶m_name, | |||
| if (param_node->name() == param_name) { | |||
| TensorPtr tensor; | |||
| if (param_node->has_default()) { | |||
| tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_node->default_param()->value()); | |||
| tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_node->default_param()); | |||
| } | |||
| if (tensor == nullptr) { | |||
| shape->push_back(ONE_SHAPE); | |||
| @@ -448,7 +448,7 @@ bool IsGraphOutputValueNodeOrParameter(const AnfNodePtr &output, const py::tuple | |||
| if (!param->has_default()) { | |||
| MS_LOG(EXCEPTION) << "Can not determine value of Parameter " << index << " (" << param->name() << ")"; | |||
| } | |||
| auto tensor = param->default_param()->value(); | |||
| auto tensor = param->default_param(); | |||
| *ret_val = py::cast(tensor); | |||
| } | |||
| return true; | |||
| @@ -124,10 +124,7 @@ bool MSANFModelParser::BuildParameterForFuncGraph(const ParameterPtr &node, cons | |||
| MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret; | |||
| } | |||
| auto param_value = std::make_shared<ParamValue>(); | |||
| MS_EXCEPTION_IF_NULL(param_value); | |||
| param_value->set_value(tensor_info); | |||
| node->set_default_param(param_value); | |||
| node->set_default_param(tensor_info); | |||
| } | |||
| anfnode_build_map_[value_proto.name()] = node; | |||
| return true; | |||
| @@ -24,22 +24,19 @@ REGISTER_PYBIND_DEFINE(ParamValue, ([](const py::module *m) { | |||
| (void)py::class_<ParamValue, ParamValuePtr>(*m, "ParamValue") | |||
| .def(py::init()) | |||
| .def("clone", &ParamValue::Clone) | |||
| .def_property("data", &ParamValue::value, &ParamValue::set_value) | |||
| .def_property("name", &ParamValue::name, &ParamValue::set_name) | |||
| .def_property("requires_grad", &ParamValue::requires_grad, &ParamValue::set_requires_grad) | |||
| .def_property("layerwise_parallel", &ParamValue::layerwise_parallel, | |||
| &ParamValue::set_layerwise_parallel) | |||
| .def(py::pickle( | |||
| [](const ParamValue &p) { // __getstate__ | |||
| return py::make_tuple(py::cast(p.value()), p.name(), p.requires_grad(), | |||
| p.layerwise_parallel()); | |||
| return py::make_tuple(p.name(), p.requires_grad(), p.layerwise_parallel()); | |||
| }, | |||
| [](const py::tuple &t) { // __setstate__ | |||
| if (t.size() != 6) { | |||
| std::runtime_error("Invalid state for ParamValue!"); | |||
| } | |||
| ParamValuePtr p = std::make_shared<ParamValue>(); | |||
| p->set_value(t[0].cast<tensor::TensorPtr>()); | |||
| p->set_name(t[1].cast<std::string>()); | |||
| p->set_requires_grad(t[2].cast<bool>()); | |||
| p->set_layerwise_parallel(t[3].cast<bool>()); | |||
| @@ -372,7 +372,7 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) { | |||
| .def(py::pickle( | |||
| [](const Tensor &t) { // __getstate__ | |||
| /* Return a tuple that fully encodes the state of the object */ | |||
| return py::make_tuple(TensorPy::AsNumpy(t)); | |||
| return py::make_tuple(TensorPy::SyncAsNumpy(t)); | |||
| }, | |||
| [](const py::tuple &t) { // __setstate__ | |||
| if (t.size() != 1) { | |||
| @@ -255,7 +255,6 @@ def ms_function(fn=None, obj=None, input_signature=None): | |||
| process_obj = obj | |||
| if args and not isinstance(args[0], MsTensor) and hasattr(args[0], func.__name__): | |||
| process_obj = args[0] | |||
| args = (x.default_input if hasattr(x, 'default_input') else x for x in args) | |||
| return _MindSporeFunction(func, input_signature, process_obj)(*args) | |||
| return staging_specialize | |||
| @@ -354,28 +353,8 @@ class _Executor: | |||
| raise RuntimeError("Failure to init and dataset subgraph!") | |||
| return True | |||
| def _build_data_graph(self, obj, params, phase): | |||
| if params is None: | |||
| self._executor.build_data_graph(obj.parameters_dict(), phase, obj.parameters_broadcast_dict()) | |||
| elif isinstance(params, OrderedDict): | |||
| self._executor.build_data_graph(params, phase) | |||
| else: | |||
| raise TypeError('Parameters need OrderedDict type, but got {}'. | |||
| format(type(params))) | |||
| def _params_init_data(self, obj, params, auto_parallel_mode=False): | |||
| """Init parameters' data.""" | |||
| if params is not None: | |||
| for key, param in params.items(): | |||
| if not auto_parallel_mode: | |||
| param.init_data() | |||
| elif key not in obj.parameter_layout_dict: | |||
| logger.debug("Layout dict does not contain the key %s.", key) | |||
| param.init_data(set_sliced=True) | |||
| else: | |||
| layout = obj.parameter_layout_dict[key] | |||
| param.init_data(layout, set_sliced=True) | |||
| obj.init_parameters_data(auto_parallel_mode=auto_parallel_mode) | |||
| def _build_data_graph(self, obj, phase): | |||
| self._executor.build_data_graph(obj.parameters_dict(), phase, obj.parameters_broadcast_dict()) | |||
| def _set_dataset_mode(self, args_list): | |||
| """set dataset mode.""" | |||
| @@ -386,7 +365,7 @@ class _Executor: | |||
| else: | |||
| _set_dataset_mode_config('normal') | |||
| def compile(self, obj, *args, phase='predict', params=None, do_convert=True, auto_parallel_mode=False): | |||
| def compile(self, obj, *args, phase='predict', do_convert=True, auto_parallel_mode=False): | |||
| """ | |||
| Compiles graph. | |||
| @@ -394,7 +373,6 @@ class _Executor: | |||
| obj (Function/Cell): The function or cell instance need compile. | |||
| args (tuple): Function or cell input arguments. | |||
| phase (str): The name of compile phase. Default: 'predict'. | |||
| params (OrderedDict): The parameters dictionary used for init data graph. Default: None. | |||
| do_convert (bool): When set to True, convert ME graph to GE graph after compiling graph. | |||
| auto_parallel_mode: When set to True, use auto parallel mode to compile graph. | |||
| @@ -435,10 +413,8 @@ class _Executor: | |||
| if auto_parallel_mode: | |||
| obj.parameter_layout_dict = self._executor.get_parameter_layout(phase) | |||
| self._params_init_data(obj, params, auto_parallel_mode) | |||
| if not enable_debug_runtime or enable_ge: | |||
| if auto_parallel_mode: | |||
| obj.load_parameter_slice(params) | |||
| replace = obj.init_parameters_data(auto_parallel_mode=auto_parallel_mode) | |||
| self._updata_param_node_default_input(phase, replace) | |||
| # set parallel inputs in sink mode | |||
| if auto_parallel_mode and (args and isinstance(args[0], Tensor) and args[0].virtual_flag): | |||
| @@ -446,16 +422,20 @@ class _Executor: | |||
| # the following GE init process is not needed when use vm or ms backend | |||
| if enable_ge: | |||
| self._build_data_graph(obj, params, phase) | |||
| self._build_data_graph(obj, phase) | |||
| if "export" not in phase: | |||
| init_phase = "init_subgraph" + "." + str(obj.create_time) | |||
| _exec_init_graph(obj, init_phase) | |||
| elif not enable_ge and "export" in phase: | |||
| self._build_data_graph(obj, params, phase) | |||
| self._build_data_graph(obj, phase) | |||
| return phase, True | |||
| def _updata_param_node_default_input(self, phase, replace): | |||
| new_param = {x.name: replace[x] for x in replace if id(x) != id(replace[x])} | |||
| return self._executor.updata_param_node_default_input(phase, new_param) | |||
| def _get_strategy(self, obj): | |||
| real_phase = self.phase_prefix + obj.phase + '.' + str(obj.create_time) | |||
| return self._executor.get_strategy(real_phase) | |||
| @@ -14,7 +14,6 @@ | |||
| # ============================================================================ | |||
| """Parameter for cell.""" | |||
| import numbers | |||
| from copy import copy | |||
| from mindspore import context | |||
| from .._c_expression import ParamValue | |||
| @@ -37,10 +36,17 @@ def _check_type(x): | |||
| return True | |||
| class Parameter: | |||
| class Parameter(MetaTensor): | |||
| """ | |||
| Parameter types of cell models. | |||
| After initialized `Parameter` is a subtype of `Tensor`. | |||
| In graph mode, if init `Parameter` by a `Initializer`, the type of Parameter will be a `MetaTensor` | |||
| not a `Tensor`. `MetaTensor` only save the shape type info of a tensor with no memory usage. The shape | |||
| can be change while compile for auto-parallel. Call `init_data` will return a Tensor Parameter with | |||
| initialized data. | |||
| Note: | |||
| Each parameter of Cell is represented by Parameter class. | |||
| @@ -52,23 +58,85 @@ class Parameter: | |||
| layerwise_parallel (bool): A kind of model parallel mode. When layerwise_parallel is true in paralle mode, | |||
| broadcast and gradients communication would not be applied on parameters. Default: False. | |||
| """ | |||
| __base_type__ = {} | |||
| def __new__(cls, default_input, name, *args, **kwargs): | |||
| input_class, *class_init_args = Parameter._get_parameter_new_args(default_input) | |||
| new_type = Parameter._get_base_class(input_class) | |||
| obj = input_class.__new__(new_type) | |||
| input_class.__init__(obj, *class_init_args) | |||
| # it's better to make the Initializer a kind of metatensor. | |||
| obj.init_mode = None | |||
| if isinstance(default_input, Initializer): | |||
| obj.init_mode = default_input | |||
| return obj | |||
| def __reduce_ex__(self, _): | |||
| data = self | |||
| if self.init_mode is not None: | |||
| data = self.init_mode | |||
| else: | |||
| # cast to break deep infinit loop while deepcopy | |||
| data = Tensor(self) | |||
| return ( | |||
| Parameter, (data, self.name, self.requires_grad, self.layerwise_parallel)) | |||
| def __init__(self, default_input, name, requires_grad=True, layerwise_parallel=False): | |||
| self._value = ParamValue() | |||
| self.set_parameter_data(default_input) | |||
| self.name = name | |||
| self.requires_grad = requires_grad | |||
| self.layerwise_parallel = layerwise_parallel | |||
| # this flag for tensor copy data. | |||
| self.init_flag = False | |||
| # this flag is for ge variable copy data. | |||
| self._is_init = False | |||
| self._inited_param = None | |||
| self._sliced = False | |||
| self.is_param_ps = False | |||
| self._cast_type = None | |||
| self.init_in_server = False | |||
| if context.get_context("mode") == context.PYNATIVE_MODE: | |||
| self.init_data() | |||
| @staticmethod | |||
| def _get_base_class(input_class): | |||
| input_class_name = f'Parameter{input_class.__name__}' | |||
| if input_class_name in Parameter.__base_type__: | |||
| new_type = Parameter.__base_type__[input_class_name] | |||
| else: | |||
| new_type = type(input_class_name, (Parameter, input_class), {}) | |||
| Parameter.__base_type__[input_class_name] = new_type | |||
| return new_type | |||
| @staticmethod | |||
| def _get_parameter_new_args(data): | |||
| """Set `default_input` of current `Parameter`.""" | |||
| if isinstance(data, bool): | |||
| raise ValueError('Parameter data can not be `bool`') | |||
| if isinstance(data, Initializer): | |||
| if context.get_context("mode") == context.PYNATIVE_MODE: | |||
| # always init data while in pynative mode. | |||
| data = data.to_tensor() | |||
| else: | |||
| return (MetaTensor, data.dtype, data.shape) | |||
| if isinstance(data, Tensor): | |||
| # make a copy of Tensor to init the parameter | |||
| return (Tensor, data.asnumpy(),) | |||
| if isinstance(data, int): | |||
| return (Tensor, data, mstype.int32) | |||
| if isinstance(data, float): | |||
| return (Tensor, data, mstype.float32) | |||
| return (Tensor, data) | |||
| def __str__(self): | |||
| value_str = MetaTensor.__repr__(self) | |||
| if isinstance(self, Tensor): | |||
| value_str = Tensor.__repr__(self) | |||
| return f'Parameter (name={self._value.name}, value={value_str})' | |||
| def __repr__(self): | |||
| format_str = 'Parameter (name={name})' | |||
| return format_str.format(name=self._value.name) | |||
| value_str = MetaTensor.__repr__(self) | |||
| if isinstance(self, Tensor): | |||
| value_str = Tensor.__repr__(self) | |||
| return f'Parameter (name={self._value.name}, value={value_str})' | |||
| def __parameter__(self): | |||
| """For parse check.""" | |||
| @@ -77,6 +145,13 @@ class Parameter: | |||
| self.is_param_ps = True | |||
| self.init_in_server = init_in_server | |||
| @property | |||
| def inited_param(self): | |||
| """Get the new parameter after call the init_data.""" | |||
| return self._inited_param | |||
| @property | |||
| def name(self): | |||
| """Get the name of the parameter.""" | |||
| @@ -157,15 +232,11 @@ class Parameter: | |||
| x._value.name = prefix + '.' + self._value.name | |||
| x.is_init = False | |||
| if init != 'same': | |||
| shape = self.default_input.shape | |||
| dtype = self.default_input.dtype | |||
| if isinstance(init, (str, Initializer, numbers.Number)): | |||
| x.init_mode = initializer(init, shape=shape, dtype=dtype) | |||
| x.default_input = MetaTensor(dtype, shape) | |||
| if context.get_context("mode") == context.PYNATIVE_MODE: | |||
| x.init_data() | |||
| else: | |||
| x.default_input = initializer(init, shape=shape, dtype=dtype) | |||
| shape = self.shape | |||
| dtype = self.dtype | |||
| x.default_input = initializer(init, shape=shape, dtype=dtype) | |||
| if context.get_context("mode") == context.PYNATIVE_MODE: | |||
| x.init_data() | |||
| return x | |||
| @property | |||
| @@ -195,50 +266,65 @@ class Parameter: | |||
| @property | |||
| def default_input(self): | |||
| return self._data | |||
| return self | |||
| @default_input.setter | |||
| def default_input(self, data): | |||
| self._data = data | |||
| self._value.data = data | |||
| def __add__(self, other): | |||
| return self.default_input + other | |||
| def __sub__(self, other): | |||
| return self.default_input - other | |||
| self.set_parameter_data(data) | |||
| def __mul__(self, other): | |||
| return self.default_input * other | |||
| def _update_tensor_data(self, data): | |||
| "Update the parameter by a Tensor." | |||
| if isinstance(self, Tensor): | |||
| # for Tensor same shape: | |||
| return self.assign_value(data) | |||
| # create a new tensor | |||
| return Parameter(data, self.name, self.requires_grad) | |||
| def __truediv__(self, other): | |||
| return self.default_input / other | |||
| def set_parameter_data(self, data, slice_shape=False): | |||
| """ | |||
| Set `default_input` of current `Parameter`. | |||
| def __setitem__(self, index, value): | |||
| default_input = self.default_input | |||
| default_input[index] = value | |||
| return self | |||
| Args: | |||
| data (Union[Tensor, Initializer]): new data. | |||
| slice_shape (bool): If slice the Parameter. Default: False. | |||
| def set_parameter_data(self, data): | |||
| """Set `default_input` of current `Parameter`.""" | |||
| if isinstance(data, bool): | |||
| raise ValueError('Parameter data can not be `bool`') | |||
| if isinstance(data, Tensor): | |||
| # make a copy of Tensor to init the parameter | |||
| data = Tensor(data.asnumpy()) | |||
| data.init_flag = False | |||
| elif isinstance(data, Initializer): | |||
| self.init_mode = data | |||
| data = MetaTensor(self.init_mode.dtype, self.init_mode.shape) | |||
| elif isinstance(data, int): | |||
| data = Tensor(data, dtype=mstype.int32) | |||
| elif isinstance(data, float): | |||
| data = Tensor(data, dtype=mstype.float32) | |||
| Retruns: | |||
| Parameter, the parameter after set data. | |||
| """ | |||
| if not isinstance(data, (MetaTensor, Initializer)): | |||
| raise ValueError(f"Parameter data must be `Initializer` or a kind of `MetaTensor` " | |||
| f"(like `Tensor` or `MetaTensor`). But with type {type(data)}.") | |||
| # both not init. | |||
| is_incoming_tensor = isinstance(data, Tensor) | |||
| is_current_tensor = isinstance(self, Tensor) | |||
| if is_incoming_tensor and not is_current_tensor: | |||
| raise TypeError("Parameter is a `MetaTensor` and not initializered, `data` for `set_parameter_data`" | |||
| "should be a Initializer. If you want to update it by Tensor, call method" | |||
| "`init_parameters_data` of `Cell` to init and replace all the Parameter of" | |||
| "network, then call this method.") | |||
| if tuple(self.shape) != tuple(data.shape): | |||
| # If Slice create Parameter shape can be change. | |||
| if slice_shape: | |||
| self._update_tensor_data(data) | |||
| self.sliced = True | |||
| else: | |||
| raise ValueError(f"Can not change the shape of Parameter which has been initialized." | |||
| f" Current shape is {self.shape}, and incoming is {data.shape}.") | |||
| if self.dtype != data.dtype: | |||
| raise ValueError(f"Can not change the Parameter dtype. Current dtype is {self.set_dtype}" | |||
| f", and incoming is {data.dtype}. Use .set_dtype(xxx) to change the dtype.") | |||
| if isinstance(data, Initializer): | |||
| # The parameter has been initializered, directly update by the data | |||
| if is_current_tensor: | |||
| self._update_tensor_data(data.to_tensor()) | |||
| else: | |||
| self.init_mode = data | |||
| elif is_incoming_tensor or is_current_tensor: | |||
| self._update_tensor_data(data) | |||
| else: | |||
| data = Tensor(data) | |||
| data.init_flag = False | |||
| self.default_input = data | |||
| raise ValueError(f"Not support to update the Parameter by {data}") | |||
| return self | |||
| def init_data(self, layout=None, set_sliced=False): | |||
| """ | |||
| @@ -252,31 +338,37 @@ class Parameter: | |||
| - slice_shape (list[int]): Shape of slice. | |||
| set_sliced (bool): True if should set parameter sliced after init the data of initializer. | |||
| Default: False. | |||
| Returns: | |||
| Parameter, Parameter after init data. | |||
| """ | |||
| if isinstance(self.default_input, Tensor): | |||
| # skip if data already initialized. | |||
| return | |||
| if self.init_mode is None: | |||
| return self | |||
| if self.inited_param is not None: | |||
| return self.inited_param | |||
| if layout is not None: | |||
| if not isinstance(layout, list): | |||
| raise TypeError("The layout should be list! layout is {}." | |||
| .format(layout)) | |||
| raise TypeError("The layout should be list! layout is {}.".format(layout)) | |||
| if len(layout) < 3: | |||
| raise ValueError("The length of layout must be larger than 3! layout is {}." | |||
| .format(layout)) | |||
| raise ValueError("The length of layout must be larger than 3! layout is {}.".format(layout)) | |||
| slice_index = int(_get_slice_index(layout[0], layout[1])) | |||
| if (self.init_in_server and self.is_param_ps and isinstance(self.init_mode, Initializer)): | |||
| self.default_input = self.init_mode.to_tensor(0, [1]) | |||
| data = self.init_mode.to_tensor(0, [1]) | |||
| else: | |||
| self.default_input = self.init_mode.to_tensor(slice_index, layout[2]) | |||
| data = self.init_mode.to_tensor(slice_index, layout[2]) | |||
| else: | |||
| if (self.init_in_server and self.is_param_ps and isinstance(self.init_mode, Initializer)): | |||
| self.default_input = self.init_mode.to_tensor(0, [1]) | |||
| data = self.init_mode.to_tensor(0, [1]) | |||
| else: | |||
| self.default_input = self.init_mode.to_tensor() | |||
| data = self.init_mode.to_tensor() | |||
| self.init_mode = None | |||
| obj = self._update_tensor_data(data) | |||
| if id(obj) != id(self): | |||
| self._inited_param = obj | |||
| obj.init_mode = None | |||
| if set_sliced: | |||
| self.sliced = True | |||
| obj.sliced = True | |||
| return obj | |||
| class ParameterTuple(tuple): | |||
| @@ -75,7 +75,7 @@ class Tensor(Tensor_): | |||
| self._virtual_flag = False | |||
| def __repr__(self): | |||
| return str(self.__str__()) | |||
| return str(Tensor_.__str__(self)) | |||
| def __add__(self, other): | |||
| out = tensor_operator_registry.get('__add__')(self, other) | |||
| @@ -283,11 +283,11 @@ class Parameter : public ANode { | |||
| std::string fullname_with_scope() override { return name(); }; | |||
| bool has_default() const { return has_default_; } | |||
| void set_default_param(ParamValuePtr param) { | |||
| void set_default_param(ValuePtr param) { | |||
| default_param_ = param; | |||
| has_default_ = true; | |||
| } | |||
| ParamValuePtr default_param() const { return default_param_; } | |||
| ValuePtr default_param() const { return default_param_; } | |||
| bool operator==(const AnfNode &other) const override { | |||
| if (!other.isa<Parameter>()) { | |||
| @@ -303,7 +303,7 @@ class Parameter : public ANode { | |||
| private: | |||
| std::string name_; | |||
| bool has_default_; | |||
| ParamValuePtr default_param_; | |||
| ValuePtr default_param_; | |||
| }; | |||
| using ParameterPtr = std::shared_ptr<Parameter>; | |||
| @@ -33,9 +33,6 @@ class ParamValue { | |||
| virtual ~ParamValue() = default; | |||
| tensor::MetaTensorPtr value() const { return value_; } | |||
| void set_value(const tensor::MetaTensorPtr &value) { value_ = value; } | |||
| const std::string &name() const { return name_; } | |||
| void set_name(const std::string &name) { name_ = name; } | |||
| @@ -72,7 +69,6 @@ class ParamValue { | |||
| } | |||
| private: | |||
| tensor::MetaTensorPtr value_; | |||
| std::string name_{"Parameter"}; | |||
| bool requires_grad_{true}; | |||
| bool layerwise_parallel_{false}; | |||
| @@ -36,7 +36,7 @@ struct AnfQuantParam { | |||
| int32_t numBits; | |||
| AnfQuantParam() : scale(1.0), zeroPoint(0), min(0.0), max(0.0), narrowRange(false), numBits(8), inited(false) {} | |||
| }; | |||
| class ParamValueLite : public ParamValue { | |||
| class ParamValueLite : public Value { | |||
| public: | |||
| ParamValueLite() : tensor_addr_(nullptr), tensor_size_(0) {} | |||
| virtual ~ParamValueLite() = default; | |||
| @@ -65,6 +65,10 @@ class ParamValueLite : public ParamValue { | |||
| quant_params_.emplace_back(std::move(quant_param)); | |||
| } | |||
| bool operator==(const Value &other) const override { | |||
| this == &other; | |||
| } | |||
| private: | |||
| void *tensor_addr_; | |||
| size_t tensor_size_; | |||
| @@ -229,7 +229,6 @@ class Cell: | |||
| for item in inputs: | |||
| if isinstance(item, numpy.ndarray): | |||
| raise TypeError("cell inputs should not be numpy array.") | |||
| self.init_parameters_data() | |||
| orign_grad = [] | |||
| if self.requires_grad is True: | |||
| _pynative_exec.set_grad_flag(True) | |||
| @@ -350,19 +349,8 @@ class Cell: | |||
| params (dict): The parameters dictionary used for init data graph. | |||
| """ | |||
| if params is None: | |||
| for key in self.parameters_dict(): | |||
| tensor = self.parameters_dict()[key].data | |||
| if key not in self.parameter_layout_dict: | |||
| logger.info("layout dict does not contain the key %s", key) | |||
| continue | |||
| if self.parameters_dict()[key].sliced: | |||
| logger.debug("Param %s is already sliced.", key) | |||
| continue | |||
| layout = self.parameter_layout_dict[key] | |||
| new_tensor = _load_tensor_by_layout(tensor, layout) | |||
| self.parameters_dict()[key].set_parameter_data(new_tensor) | |||
| self.parameters_dict()[key].sliced = True | |||
| elif isinstance(params, OrderedDict): | |||
| params = self.parameters_dict() | |||
| if isinstance(params, OrderedDict): | |||
| for key in params: | |||
| tensor = params[key].data | |||
| if key not in self.parameter_layout_dict: | |||
| @@ -373,8 +361,7 @@ class Cell: | |||
| continue | |||
| layout = self.parameter_layout_dict[key] | |||
| new_tensor = _load_tensor_by_layout(tensor, layout) | |||
| params[key].set_parameter_data(new_tensor) | |||
| params[key].sliced = True | |||
| params[key].set_parameter_data(new_tensor, True) | |||
| else: | |||
| raise TypeError('Parameters need OrderedDict type, but got {}'. | |||
| format(type(params))) | |||
| @@ -545,17 +532,46 @@ class Cell: | |||
| """ | |||
| raise NotImplementedError | |||
| def init_parameters_data(self, recurse=True, auto_parallel_mode=False): | |||
| """Init parameters' data.""" | |||
| for param in self.get_parameters(expand=recurse): | |||
| if not auto_parallel_mode: | |||
| param.init_data() | |||
| elif param.name not in self.parameter_layout_dict: | |||
| logger.debug("Layout dict does not contain the key %s.", param.name) | |||
| param.init_data(set_sliced=True) | |||
| else: | |||
| layout = self.parameter_layout_dict[param.name] | |||
| param.init_data(layout, set_sliced=True) | |||
| def init_parameters_data(self, auto_parallel_mode=False): | |||
| """ | |||
| Init all parameters' data and replace the original saved parameters in cell. | |||
| Args: | |||
| auto_parallel_mode (bool): If running in auto_parallel_mode. | |||
| Returns: | |||
| Dict[Parameter, Parameter], returns a dict of original parameter and replaced parameter. | |||
| """ | |||
| replace = dict() | |||
| def _updata(param): | |||
| if param in replace: | |||
| return replace[param] | |||
| layout = None | |||
| set_sliced = False | |||
| if auto_parallel_mode: | |||
| set_sliced = True | |||
| if param.name not in self.parameter_layout_dict: | |||
| logger.debug("Layout dict does not contain the key %s.", param.name) | |||
| else: | |||
| layout = self.parameter_layout_dict[param.name] | |||
| new_p = param.init_data(layout, set_sliced=set_sliced) | |||
| replace[param] = new_p | |||
| return new_p | |||
| # replace all original usage. | |||
| cells = self.cells_and_names() | |||
| for _, cell in cells: | |||
| params = cell._params.items() | |||
| for param_name, param in params: | |||
| cell._params[param_name] = _updata(param) | |||
| cell_dict = cell.__dict__ | |||
| for key in cell_dict: | |||
| if isinstance(cell_dict[key], ParameterTuple): | |||
| param_tuple = cell_dict[key] | |||
| new_param_tuple = [] | |||
| for param in param_tuple: | |||
| new_param_tuple.append(_updata(param)) | |||
| cell.__dict__[key] = ParameterTuple(new_param_tuple) | |||
| return replace | |||
| def parameters_dict(self, recurse=True): | |||
| """ | |||
| @@ -682,9 +698,10 @@ class Cell: | |||
| for cell_name, cell in cells: | |||
| params = cell._params.items() | |||
| for par_name, par in params: | |||
| if par and par not in params_set: | |||
| if par.inited_param is not None: | |||
| par = par.inited_param | |||
| if par is not None and par not in params_set: | |||
| params_set.add(par) | |||
| par_new_name = par_name | |||
| if cell_name: | |||
| par_new_name = cell_name + '.' + par_new_name | |||
| @@ -90,7 +90,7 @@ class Optimizer(Cell): | |||
| def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0): | |||
| super(Optimizer, self).__init__(auto_prefix=False) | |||
| if parameters and not isinstance(parameters, list): | |||
| if parameters is not None and not isinstance(parameters, list): | |||
| parameters = list(parameters) | |||
| if not parameters: | |||
| @@ -295,7 +295,6 @@ def load_param_into_net(net, parameter_dict): | |||
| logger.error("Failed to combine the net and the parameters.") | |||
| msg = ("Argument parameter_dict element should be a Parameter, but got {}.".format(type(new_param))) | |||
| raise TypeError(msg) | |||
| param.init_data() | |||
| _update_param(param, new_param) | |||
| else: | |||
| param_not_load.append(param.name) | |||
| @@ -362,15 +361,13 @@ def _exec_save_checkpoint(train_network, ckpt_file_name, integrated_save=True, a | |||
| integrated_save (bool): Whether to integrated save in automatic model parallel scene. | |||
| async_save (bool): Whether asynchronous execute save checkpoint into file. Default: False. | |||
| """ | |||
| train_network.init_parameters_data() | |||
| param_dict = {} | |||
| for _, param in train_network.parameters_and_names(): | |||
| param_dict[param.name] = param | |||
| param_list = [] | |||
| for (key, value) in param_dict.items(): | |||
| each_param = {"name": key} | |||
| value.init_data() | |||
| if isinstance(value.data, Tensor): | |||
| param_data = value.data | |||
| else: | |||
| @@ -263,6 +263,7 @@ class MobileNetV2(nn.Cell): | |||
| Examples: | |||
| >>> _initialize_weights() | |||
| """ | |||
| self.init_parameters_data() | |||
| for _, m in self.cells_and_names(): | |||
| if isinstance(m, (nn.Conv2d, DepthwiseConv)): | |||
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |||
| @@ -196,6 +196,7 @@ class mobilenetV2(nn.Cell): | |||
| self.head = nn.SequentialCell(head) | |||
| # init weights | |||
| self.init_parameters_data() | |||
| self._initialize_weights() | |||
| def construct(self, x): | |||
| @@ -215,6 +216,7 @@ class mobilenetV2(nn.Cell): | |||
| Examples: | |||
| >>> _initialize_weights() | |||
| """ | |||
| self.init_parameters_data() | |||
| for _, m in self.cells_and_names(): | |||
| if isinstance(m, nn.Conv2d): | |||
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |||
| @@ -200,6 +200,7 @@ class ResUnit(nn.Cell): | |||
| self.add = P.TensorAdd() if self.use_short_cut_conv else None | |||
| def construct(self, x): | |||
| """construct""" | |||
| if self.first_conv: | |||
| out = self.expand(x) | |||
| else: | |||
| @@ -289,6 +290,7 @@ class MobileNetV3(nn.Cell): | |||
| kernel_size=1, has_bias=True, pad_mode='pad') | |||
| self.squeeze = P.Squeeze(axis=(2, 3)) | |||
| self.init_parameters_data() | |||
| self._initialize_weights() | |||
| def construct(self, x): | |||
| @@ -171,9 +171,9 @@ def test_bert_tdt(): | |||
| netwithgrads.set_train(True) | |||
| model = Model(netwithgrads) | |||
| callback = ModelCallback() | |||
| netwithloss.init_parameters_data() | |||
| params = netwithloss.trainable_params() | |||
| for param in params: | |||
| param.init_data() | |||
| value = param.default_input | |||
| name = param.name | |||
| if isinstance(value, Tensor): | |||
| @@ -207,9 +207,9 @@ def test_bert_percision(): | |||
| netwithgrads.set_train(True) | |||
| model = Model(netwithgrads) | |||
| callback = ModelCallback() | |||
| netwithloss.init_parameters_data() | |||
| params = netwithloss.trainable_params() | |||
| for param in params: | |||
| param.init_data() | |||
| value = param.default_input | |||
| name = param.name | |||
| if isinstance(value, Tensor): | |||
| @@ -279,9 +279,9 @@ def test_bert_performance(): | |||
| netwithgrads.set_train(True) | |||
| model = Model(netwithgrads) | |||
| callback = ModelCallback() | |||
| netwithloss.init_parameters_data() | |||
| params = netwithloss.trainable_params() | |||
| for param in params: | |||
| param.init_data() | |||
| value = param.default_input | |||
| name = param.name | |||
| if isinstance(value, Tensor): | |||
| @@ -63,6 +63,7 @@ class LossCallBack(Callback): | |||
| str(cb_params.net_outputs))) | |||
| def model_fine_tune(train_net, fix_weight_layer): | |||
| train_net.init_parameters_data() | |||
| for para in train_net.trainable_params(): | |||
| para.set_parameter_data(Tensor(np.ones(para.data.shape).astype(np.float32) * 0.02)) | |||
| if fix_weight_layer in para.name: | |||
| @@ -174,9 +174,14 @@ def train_process(q, device_id, epoch_size, device_num, enable_hccl): | |||
| steps_per_epoch=step_size, lr_decay_mode=config.lr_decay_mode)) | |||
| # optimizer | |||
| decayed_params = list(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name, | |||
| net.trainable_params())) | |||
| no_decayed_params = [param for param in net.trainable_params() if param not in decayed_params] | |||
| decayed_params = [] | |||
| no_decayed_params = [] | |||
| for param in net.trainable_params(): | |||
| if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: | |||
| decayed_params.append(param) | |||
| else: | |||
| no_decayed_params.append(param) | |||
| group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay}, | |||
| {'params': no_decayed_params, 'weight_decay': 0.0}, | |||
| {'order_params': net.trainable_params()}] | |||
| @@ -107,7 +107,6 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond2) { | |||
| for (auto p : kg->parameters()) { | |||
| auto param = p->cast<ParameterPtr>(); | |||
| EXPECT_NE(param, nullptr); | |||
| param->set_default_param(std::make_shared<ParamValue>()); | |||
| } | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| @@ -157,7 +156,6 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond4) { | |||
| for (auto p : kg->parameters()) { | |||
| auto param = p->cast<ParameterPtr>(); | |||
| EXPECT_NE(param, nullptr); | |||
| param->set_default_param(std::make_shared<ParamValue>()); | |||
| } | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| @@ -185,7 +183,6 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond5) { | |||
| for (auto p : kg->parameters()) { | |||
| auto param = p->cast<ParameterPtr>(); | |||
| EXPECT_NE(param, nullptr); | |||
| param->set_default_param(std::make_shared<ParamValue>()); | |||
| } | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| @@ -766,7 +766,7 @@ TEST_F(AnfRuntimeAlgorithmTest, IsParameterWeight) { | |||
| auto kernel_graph = std::make_shared<KernelGraph>(); | |||
| auto parameter_node = kernel_graph->add_parameter(); | |||
| MS_EXCEPTION_IF_NULL(parameter_node); | |||
| auto param_value_new = std::make_shared<ParamValue>(); | |||
| auto param_value_new = std::make_shared<tensor::Tensor>(int64_t(0), kInt32); | |||
| parameter_node->set_default_param(param_value_new); | |||
| EXPECT_TRUE(AnfAlgo::IsParameterWeight(parameter_node)); | |||
| EXPECT_THROW(AnfAlgo::IsParameterWeight(nullptr), std::runtime_error); | |||
| @@ -82,7 +82,7 @@ TEST_F(KernelGraphTest, NewParameter) { | |||
| // test weight parameter node as input | |||
| auto weight_parameter_node = anf_graph->add_parameter(); | |||
| MS_EXCEPTION_IF_NULL(weight_parameter_node); | |||
| auto param_value_new = std::make_shared<ParamValue>(); | |||
| auto param_value_new = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, shape); | |||
| weight_parameter_node->set_default_param(param_value_new); | |||
| weight_parameter_node->set_abstract(x_abstract); | |||
| auto new_weight_parameter_node = kernel_graph->NewParameter(weight_parameter_node); | |||
| @@ -225,7 +225,7 @@ def test_div(): | |||
| @non_graph_engine | |||
| def test_parameter(): | |||
| x = Parameter(initializer(1, [1], ms.float32), name="beta1_power") | |||
| x.init_data() | |||
| x = x.init_data() | |||
| z = x / 2 | |||
| print(z) | |||
| @@ -139,14 +139,31 @@ def test_parameter_lazy_init(): | |||
| # Call init_data() without set default_input. | |||
| para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test1') | |||
| assert not isinstance(para.default_input, Tensor) | |||
| para.init_data() | |||
| para = para.init_data() | |||
| assert isinstance(para.default_input, Tensor) | |||
| assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3))) | |||
| # Call init_data() after default_input is set. | |||
| para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test2') | |||
| assert not isinstance(para.default_input, Tensor) | |||
| para.default_input = Tensor(np.zeros((1, 2, 3))) | |||
| assert np.array_equal(para.default_input.asnumpy(), np.zeros((1, 2, 3))) | |||
| para.init_data() # expect no effect. | |||
| # expect type error when not init | |||
| with pytest.raises(TypeError): | |||
| para.default_input = Tensor(np.zeros((1, 2, 3))) | |||
| # init then assign | |||
| para = para.init_data() | |||
| # check the type | |||
| with pytest.raises(ValueError): | |||
| para.default_input = Tensor(np.zeros((1, 2, 3))) | |||
| # check the shape | |||
| with pytest.raises(ValueError): | |||
| para.default_input = Tensor(np.zeros((1, 2))) | |||
| # expect change ok | |||
| para.default_input = Tensor(np.zeros((1, 2, 3)).astype(np.float32)) | |||
| assert np.array_equal(para.default_input.asnumpy(), np.zeros((1, 2, 3))) | |||
| para.default_input = initializer('ones', [1, 2, 3], mstype.float32) | |||
| assert isinstance(para.default_input, Tensor) | |||
| # same object and has inited | |||
| assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3))) | |||
| # expect no effect. | |||
| para.init_data() | |||
| assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3))) | |||
| @@ -69,8 +69,7 @@ def test_qat_lenet(): | |||
| net = qat.convert_quant_network( | |||
| net, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) | |||
| # should load the checkpoint. mock here | |||
| for param in net.get_parameters(): | |||
| param.init_data() | |||
| net.init_parameters_data() | |||
| qat.export(net, img, file_name="quant.pb") | |||
| @@ -80,8 +79,7 @@ def test_qat_mobile_per_channel_tf(): | |||
| img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32)) | |||
| network = qat.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) | |||
| # should load the checkpoint. mock here | |||
| for param in network.get_parameters(): | |||
| param.init_data() | |||
| network.init_parameters_data() | |||
| qat.export(network, img, file_name="quant.pb") | |||
| @pytest.mark.skip(reason="no `te.lang.cce` in ut env") | |||
| @@ -90,6 +88,5 @@ def test_qat_mobile_per_channel_ff(): | |||
| img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32)) | |||
| network = qat.convert_quant_network(network, bn_fold=True, per_channel=[False, False], symmetric=[True, False]) | |||
| # should load the checkpoint. mock here | |||
| for param in network.get_parameters(): | |||
| param.init_data() | |||
| network.init_parameters_data() | |||
| qat.export(network, img, file_name="quant.pb") | |||