Signed-off-by: alex-yuyue <yue.yu1@huawei.com>pull/15931/head
| @@ -2238,15 +2238,20 @@ TEST_F(MindDataTestPipeline, TestSliceSuccess5) { | |||||
| u_int32_t curr_seed = GlobalContext::config_manager()->seed(); | u_int32_t curr_seed = GlobalContext::config_manager()->seed(); | ||||
| GlobalContext::config_manager()->set_seed(246); | GlobalContext::config_manager()->set_seed(246); | ||||
| std::shared_ptr<SchemaObj> schema = Schema(); | std::shared_ptr<SchemaObj> schema = Schema(); | ||||
| ASSERT_OK(schema->add_column("col1", mindspore::DataType::kNumberTypeInt16, {2, 2})); | |||||
| // Generate a ds of 4 tensors, each tensor has 3 rows and 2 columns | |||||
| ASSERT_OK(schema->add_column("col1", mindspore::DataType::kNumberTypeInt16, {3, 2})); | |||||
| std::shared_ptr<Dataset> ds = RandomData(4, schema); | std::shared_ptr<Dataset> ds = RandomData(4, schema); | ||||
| EXPECT_NE(ds, nullptr); | EXPECT_NE(ds, nullptr); | ||||
| ds = ds->SetNumWorkers(2); | ds = ds->SetNumWorkers(2); | ||||
| EXPECT_NE(ds, nullptr); | EXPECT_NE(ds, nullptr); | ||||
| // Apply Slice op on ds, get the first and third elements in each row. | |||||
| // Apply two SliceOptions on ds which includes 4 tensors with shape 3*2 | |||||
| // The first SliceOption is to slice the first and the second row of each tensor | |||||
| // The shape of result tensor changes to 2*2 | |||||
| std::vector<dsize_t> indices1 = {0, 1}; | std::vector<dsize_t> indices1 = {0, 1}; | ||||
| SliceOption slice_option1 = SliceOption(indices1); | SliceOption slice_option1 = SliceOption(indices1); | ||||
| // The second SliceOption is to slice the last column of each tensor | |||||
| // The shape of result tensor changes to 2*1 | |||||
| std::vector<dsize_t> indices2 = {-1}; | std::vector<dsize_t> indices2 = {-1}; | ||||
| SliceOption slice_option2 = SliceOption(indices2); | SliceOption slice_option2 = SliceOption(indices2); | ||||
| @@ -2270,7 +2275,7 @@ TEST_F(MindDataTestPipeline, TestSliceSuccess5) { | |||||
| while (row.size() != 0) { | while (row.size() != 0) { | ||||
| auto ind = row["col1"]; | auto ind = row["col1"]; | ||||
| std::shared_ptr<Tensor> de_expected_tensor; | std::shared_ptr<Tensor> de_expected_tensor; | ||||
| ASSERT_OK(Tensor::CreateFromVector(expected[i], TensorShape({1, 2}), &de_expected_tensor)); | |||||
| ASSERT_OK(Tensor::CreateFromVector(expected[i], TensorShape({2, 1}), &de_expected_tensor)); | |||||
| mindspore::MSTensor expected_tensor = | mindspore::MSTensor expected_tensor = | ||||
| mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_expected_tensor)); | mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_expected_tensor)); | ||||
| EXPECT_MSTENSOR_EQ(ind, expected_tensor); | EXPECT_MSTENSOR_EQ(ind, expected_tensor); | ||||
| @@ -63,10 +63,13 @@ using mindspore::StatusCode; | |||||
| } \ | } \ | ||||
| } while (false) | } while (false) | ||||
| // Macro to compare 2 MSTensors; compare shape-size and data | |||||
| // Macro to compare 2 MSTensors; compare shape-size, shape and data | |||||
| #define EXPECT_MSTENSOR_EQ(_mstensor1, _mstensor2) \ | #define EXPECT_MSTENSOR_EQ(_mstensor1, _mstensor2) \ | ||||
| do { \ | do { \ | ||||
| EXPECT_EQ(_mstensor1.Shape().size(), _mstensor2.Shape().size()); \ | EXPECT_EQ(_mstensor1.Shape().size(), _mstensor2.Shape().size()); \ | ||||
| for (int i = 0; i < _mstensor1.Shape().size(); i++) { \ | |||||
| EXPECT_EQ(_mstensor1.Shape()[i], _mstensor2.Shape()[i]); \ | |||||
| } \ | |||||
| EXPECT_EQ(_mstensor1.DataSize(), _mstensor2.DataSize()); \ | EXPECT_EQ(_mstensor1.DataSize(), _mstensor2.DataSize()); \ | ||||
| EXPECT_EQ(std::memcmp((const void *)_mstensor1.Data().get(), (const void *)_mstensor2.Data().get(), \ | EXPECT_EQ(std::memcmp((const void *)_mstensor1.Data().get(), (const void *)_mstensor2.Data().get(), \ | ||||
| _mstensor2.DataSize()), 0); \ | _mstensor2.DataSize()), 0); \ | ||||
| @@ -0,0 +1,78 @@ | |||||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================== | |||||
| """ | |||||
| Eager Tests for Transform Tensor ops | |||||
| """ | |||||
| import numpy as np | |||||
| import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.transforms.c_transforms as data_trans | |||||
| def test_eager_concatenate(): | |||||
| """ | |||||
| Test Concatenate op is callable | |||||
| """ | |||||
| prepend_tensor = np.array([1.4, 2., 3., 4., 4.5], dtype=np.float) | |||||
| append_tensor = np.array([9., 10.3, 11., 12.], dtype=np.float) | |||||
| concatenate_op = data_trans.Concatenate(0, prepend_tensor, append_tensor) | |||||
| expected = np.array([1.4, 2., 3., 4., 4.5, 5., 6., 7., 8., 9., 10.3, | |||||
| 11., 12.]) | |||||
| assert np.array_equal(concatenate_op([5., 6., 7., 8.]), expected) | |||||
| def test_eager_fill(): | |||||
| """ | |||||
| Test Fill op is callable | |||||
| """ | |||||
| fill_op = data_trans.Fill(3) | |||||
| expected = np.array([3, 3, 3, 3]) | |||||
| assert np.array_equal(fill_op([4, 5, 6, 7]), expected) | |||||
| def test_eager_mask(): | |||||
| """ | |||||
| Test Mask op is callable | |||||
| """ | |||||
| mask_op = data_trans.Mask(data_trans.Relational.EQ, 3, mstype.bool_) | |||||
| expected = np.array([False, False, True, False, False]) | |||||
| assert np.array_equal(mask_op([1, 2, 3, 4, 5]), expected) | |||||
| def test_eager_pad_end(): | |||||
| """ | |||||
| Test PadEnd op is callable | |||||
| """ | |||||
| pad_end_op = data_trans.PadEnd([3], -1) | |||||
| expected = np.array([1, 2, -1]) | |||||
| assert np.array_equal(pad_end_op([1, 2]), expected) | |||||
| def test_eager_slice(): | |||||
| """ | |||||
| Test Slice op is callable | |||||
| """ | |||||
| indexing = [[0], [0, 3]] | |||||
| slice_op = data_trans.Slice(*indexing) | |||||
| expected = np.array([[1, 4]]) | |||||
| assert np.array_equal(slice_op([[1, 2, 3, 4, 5]]), expected) | |||||
| if __name__ == "__main__": | |||||
| test_eager_concatenate() | |||||
| test_eager_fill() | |||||
| test_eager_mask() | |||||
| test_eager_pad_end() | |||||
| test_eager_slice() | |||||