diff --git a/mindspore/ccsrc/backend/kernel_compiler/gpu/math/matmul_gpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/gpu/math/matmul_gpu_kernel.h index d6d547113c..f65b6fd10e 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/gpu/math/matmul_gpu_kernel.h +++ b/mindspore/ccsrc/backend/kernel_compiler/gpu/math/matmul_gpu_kernel.h @@ -86,7 +86,7 @@ class MatMulGpuKernel : public GpuKernel { dtype_b_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 1))); dtype_c_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetOutputDeviceDataType(kernel_node, 0))); if (dtype_a_ == CUDA_R_16F && dtype_b_ == CUDA_R_16F && dtype_c_ == CUDA_R_16F) { - MS_LOG(WARNING) << "input and output type is float16, allow to use Tensor Core operations if possible"; + MS_LOG(INFO) << "input and output type is float16, allow to use Tensor Core operations if possible"; algo_ = CUBLAS_GEMM_DEFAULT_TENSOR_OP; } auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); diff --git a/mindspore/ccsrc/backend/kernel_compiler/gpu/nn/pooling_grad_gpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/gpu/nn/pooling_grad_gpu_kernel.h index ac78d2cd2a..2e5692775c 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/gpu/nn/pooling_grad_gpu_kernel.h +++ b/mindspore/ccsrc/backend/kernel_compiler/gpu/nn/pooling_grad_gpu_kernel.h @@ -86,6 +86,7 @@ class PoolingGradGpuKernel : public GpuKernel { auto dout_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 2); auto output_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0); data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0); + cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0))); is_null_input_ = CHECK_NULL_INPUT(input_shape) || CHECK_NULL_INPUT(input_mask); if (is_null_input_) { MS_LOG(WARNING) << "PoolingGradGpuKernel input is null."; @@ -204,7 +205,6 @@ class PoolingGradGpuKernel : public GpuKernel { "cudnnSetPoolingNdDescriptor failed"); } void SetPoolingMode(const CNodePtr &kernel_node) { - cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0))); mode_ = AnfAlgo::GetCNodeName(kernel_node); if (mode_ == "AvgPoolGradGpu") { pooling_mode_ = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING; diff --git a/mindspore/ccsrc/runtime/device/gpu/kernel_info_setter.cc b/mindspore/ccsrc/runtime/device/gpu/kernel_info_setter.cc index 81832f64fd..8d73a33329 100644 --- a/mindspore/ccsrc/runtime/device/gpu/kernel_info_setter.cc +++ b/mindspore/ccsrc/runtime/device/gpu/kernel_info_setter.cc @@ -345,7 +345,6 @@ void SetKernelInfo(const CNodePtr &kernel_node, KernelType kernel_type) { SetGraphKernelInfo(kernel_node, func_graph); return; } - std::vector inputs_format; std::vector inputs_type; for (size_t input_index = 0; input_index < AnfAlgo::GetInputTensorNum(kernel_node); ++input_index) { @@ -368,12 +367,10 @@ void SetKernelInfo(const CNodePtr &kernel_node, KernelType kernel_type) { builder->SetInputsDeviceType(inputs_type); builder->SetOutputsFormat(outputs_format); builder->SetOutputsDeviceType(outputs_type); - bool result = false; if (kernel_type == UNKNOWN_KERNEL_TYPE) { result = kernel::GpuKernelFactory::GetInstance().SearchRegistered(AnfAlgo::GetCNodeName(kernel_node), builder->Build()); - if (!result) { result = SelectAkgKernel(kernel_node, builder->Build()); kernel_type = AKG_KERNEL; @@ -381,7 +378,6 @@ void SetKernelInfo(const CNodePtr &kernel_node, KernelType kernel_type) { } else if (kernel_type == AKG_KERNEL) { result = SelectAkgKernel(kernel_node, builder->Build()); } - if (!result) { PrintUnsupportedTypeException(kernel_node, inputs_type, outputs_type); return;