|
|
|
@@ -0,0 +1,50 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
""" |
|
|
|
##############export checkpoint file into mindir model################# |
|
|
|
python export.py |
|
|
|
""" |
|
|
|
import argparse |
|
|
|
import os |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore import export, load_checkpoint, load_param_into_net |
|
|
|
from src.config import lstm_cfg as cfg |
|
|
|
from src.lstm import SentimentNet |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter') |
|
|
|
parser.add_argument('--preprocess_path', type=str, default='./preprocess', |
|
|
|
help='path where the pre-process data is stored.') |
|
|
|
parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32) |
|
|
|
network = SentimentNet(vocab_size=embedding_table.shape[0], |
|
|
|
embed_size=cfg.embed_size, |
|
|
|
num_hiddens=cfg.num_hiddens, |
|
|
|
num_layers=cfg.num_layers, |
|
|
|
bidirectional=cfg.bidirectional, |
|
|
|
num_classes=cfg.num_classes, |
|
|
|
weight=Tensor(embedding_table), |
|
|
|
batch_size=cfg.batch_size) |
|
|
|
|
|
|
|
param_dict = load_checkpoint(args.ckpt_file) |
|
|
|
load_param_into_net(network, param_dict) |
|
|
|
|
|
|
|
input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[64, 500]).astype(np.int32)) |
|
|
|
export(network, input_arr, file_name="lstm", file_format="MINDIR") |