| @@ -91,7 +91,7 @@ int Gather::InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor | |||
| std::vector<int> out_shape{in_shape}; | |||
| out_shape.erase(out_shape.begin() + axis); | |||
| for (int i = 0; i < indices_rank; i++) { | |||
| out_shape.insert(out_shape.begin() + axis, indices_shape[i]); | |||
| out_shape.insert(out_shape.begin() + axis + i, indices_shape[i]); | |||
| } | |||
| output->set_shape(out_shape); | |||
| return RET_OK; | |||
| @@ -55,7 +55,7 @@ kernel::LiteKernel *CpuFullConnectionInt8KernelCreator(const std::vector<lite::t | |||
| } | |||
| int RestoreFullconnectWeight(lite::tensor::Tensor *input_tensor) { | |||
| MS_ASSERT(input_tensor != nullptr); | |||
| if (input_tensor->data_type() != kNumberTypeUInt8) { | |||
| if (input_tensor->data_type() != kNumberTypeInt8) { | |||
| MS_LOG(ERROR) << "full connect input type error" << input_tensor->data_type(); | |||
| return RET_ERROR; | |||
| } | |||
| @@ -63,7 +63,7 @@ int RestoreFullconnectWeight(lite::tensor::Tensor *input_tensor) { | |||
| MS_LOG(ERROR) << "no quant param"; | |||
| return RET_ERROR; | |||
| } | |||
| const auto* quant_data = static_cast<const uint8_t*>(input_tensor->Data()); | |||
| const auto* quant_data = static_cast<const int8_t*>(input_tensor->Data()); | |||
| auto* dequant_data = static_cast<float *>(malloc(input_tensor->DataSize() * sizeof(float))); | |||
| if (dequant_data == nullptr) { | |||
| MS_LOG(ERROR) << "malloc faile"; | |||
| @@ -108,7 +108,7 @@ kernel::LiteKernel *CpuFullConnectionFp32KernelCreator(const std::vector<lite::t | |||
| MS_ASSERT(desc.type == schema::PrimitiveType_Concat); | |||
| auto *weight_tensor = inputs.at(kWeightIndex); | |||
| auto *restore_data = weight_tensor->Data(); | |||
| if (primitive->GetQuantType() == schema::QuantType_WeightQuant) { | |||
| if (!weight_tensor->GetQuantParams().empty()) { | |||
| RestoreFullconnectWeight(inputs.at(kWeightIndex)); | |||
| } | |||
| auto kernel = new (std::nothrow) FullconnectionCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| @@ -123,7 +123,7 @@ kernel::LiteKernel *CpuFullConnectionFp32KernelCreator(const std::vector<lite::t | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| return nullptr; | |||
| } | |||
| if (primitive->GetQuantType() == schema::QuantType_WeightQuant) { | |||
| if (!weight_tensor->GetQuantParams().empty()) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| } | |||
| @@ -116,11 +116,6 @@ int RestoreMulWeight(lite::tensor::Tensor *input_tensor) { | |||
| return RET_OK; | |||
| } | |||
| int ArithmeticSelfCPUKernel::Run() { | |||
| void *restore_data = nullptr; | |||
| if (primitive_->GetQuantType() == schema::QuantType_WeightQuant) { | |||
| restore_data = in_tensors_[1]->Data(); | |||
| RestoreMulWeight(in_tensors_[1]); | |||
| } | |||
| auto ret = Prepare(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Prepare fail!ret: " << ret; | |||
| @@ -135,10 +130,6 @@ int ArithmeticSelfCPUKernel::Run() { | |||
| MS_LOG(ERROR) << "ArithmeticSelfRun error error_code[" << ret << "]"; | |||
| return ret; | |||
| } | |||
| if (primitive_->GetQuantType() == schema::QuantType_WeightQuant) { | |||
| in_tensors_[1]->FreeData(); | |||
| in_tensors_[1]->SetData(restore_data); | |||
| } | |||
| return RET_OK; | |||
| } | |||
| @@ -35,29 +35,11 @@ int GatherInt8CPUKernel::Init() { | |||
| axis_ = (reinterpret_cast<GatherParameter *>(op_parameter_))->axis_; | |||
| batchDims_ = (reinterpret_cast<GatherParameter *>(op_parameter_))->batchDims_; | |||
| auto in_quant_args = in_tensors_.at(0)->GetQuantParams(); | |||
| auto ind_quant_args = in_tensors_.at(1)->GetQuantParams(); | |||
| auto out_quant_args = out_tensors_.at(0)->GetQuantParams(); | |||
| param_.alpha_ = in_quant_args.front().scale / out_quant_args.front().scale; | |||
| param_.zp_in_ = in_quant_args.front().zeroPoint; | |||
| param_.zp_out_ = out_quant_args.front().zeroPoint; | |||
| auto indices_ptr = reinterpret_cast<int8_t *>(in_tensors_.at(1)->Data()); | |||
| if (indices_ != nullptr) { | |||
| free(indices_); | |||
| indices_ = nullptr; | |||
| } | |||
| int count = in_tensors_.at(1)->ElementsNum(); | |||
| indices_ = reinterpret_cast<int *>(malloc(count * sizeof(int))); | |||
| if (indices_ == nullptr) { | |||
| MS_LOG(ERROR) << "Gather Malloc indices_ error!"; | |||
| return RET_ERROR; | |||
| } | |||
| (void)memset(indices_, 0, count * sizeof(int)); | |||
| for (int i = 0; i < count; ++i) { | |||
| indices_[i] = | |||
| static_cast<int>(round((indices_ptr[i] - ind_quant_args.front().zeroPoint) * ind_quant_args.front().scale)); | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| @@ -73,6 +55,7 @@ int GatherInt8CPUKernel::DoGather(int task_id) { | |||
| auto input_ptr = reinterpret_cast<int8_t *>(input_tensor->Data()); | |||
| auto output_ptr = reinterpret_cast<int8_t *>(out_tensor->Data()); | |||
| auto indices_ptr = reinterpret_cast<int32_t *>(out_tensor->Data()); | |||
| auto in_shape = input_tensor->shape(); | |||
| int in_rank = in_shape.size(); | |||
| @@ -80,8 +63,8 @@ int GatherInt8CPUKernel::DoGather(int task_id) { | |||
| const int limit = in_shape[axis_]; | |||
| for (int i = 0; i < indices_element_size; ++i) { | |||
| if (indices_[i] >= limit) { | |||
| MS_LOG(ERROR) << " indice data: " << indices_[i] << " is not in [ 0, " << limit - 1 << " ]"; | |||
| if (indices_ptr[i] >= limit) { | |||
| MS_LOG(ERROR) << " indice data: " << indices_ptr[i] << " is not in [ 0, " << limit - 1 << " ]"; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| @@ -103,7 +86,7 @@ int GatherInt8CPUKernel::DoGather(int task_id) { | |||
| int error_code; | |||
| input_ptr += thread_stride * limit; | |||
| output_ptr += thread_stride * indices_element_size; | |||
| error_code = GatherInt8(input_ptr, output_ptr, count, inner_size, limit, indices_, indices_element_size, param_); | |||
| error_code = GatherInt8(input_ptr, output_ptr, count, inner_size, limit, indices_ptr, indices_element_size, param_); | |||
| if (error_code != RET_OK) { | |||
| return RET_ERROR; | |||
| @@ -127,6 +110,7 @@ int GatherInt8CPUKernel::Run() { | |||
| MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret; | |||
| return prepare_ret; | |||
| } | |||
| int error_code = ParallelLaunch(THREAD_POOL_DEFAULT, GatherInt8Run, this, thread_count_); | |||
| if (error_code != RET_OK) { | |||
| MS_LOG(ERROR) << "Gather function error error_code[" << error_code << "]"; | |||
| @@ -30,8 +30,6 @@ class GatherInt8CPUKernel : public LiteKernel { | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {} | |||
| ~GatherInt8CPUKernel() { | |||
| free(indices_); | |||
| indices_ = nullptr; | |||
| } | |||
| int Init() override; | |||
| @@ -40,7 +38,6 @@ class GatherInt8CPUKernel : public LiteKernel { | |||
| int DoGather(int task_id); | |||
| private: | |||
| int *indices_ = nullptr; | |||
| int thread_count_; | |||
| int batchDims_; | |||
| int axis_; | |||
| @@ -129,7 +129,7 @@ void AnfExporter::SetGraphInputIndex(const std::unique_ptr<schema::MetaGraphT> & | |||
| for (auto node : graph_input_nodes_) { | |||
| for (auto input : node->inputIndex) { | |||
| auto tensor = meta_graphT->allTensors[input].get(); | |||
| if (tensor->data.empty()) { | |||
| if (tensor->nodeType != schema::NodeType_CNode && tensor->data.empty()) { | |||
| tensor->nodeType = schema::NodeType_ValueNode; | |||
| tensor->format = schema::Format_NHWC; | |||
| if (!IsContain(meta_graphT->inputIndex, input)) { | |||
| @@ -261,7 +261,6 @@ int AnfExporter::ConvertInputParameter(const std::shared_ptr<AnfNode> input_anod | |||
| return RET_OK; | |||
| } | |||
| auto paramTensor = std::make_unique<schema::TensorT>(); | |||
| paramTensor->nodeType = schema::NodeType_ValueNode; | |||
| paramTensor->format = schema::Format_NHWC; | |||
| auto abstractBase = paramNode->abstract(); | |||
| if (abstractBase == nullptr) { | |||
| @@ -341,11 +340,10 @@ int AnfExporter::SetOpInputNode(const CNodePtr &cnode, const std::unique_ptr<sch | |||
| if (cnode->inputs().size() <= 1) { | |||
| return RET_OK; | |||
| } | |||
| bool is_graph_input = true; | |||
| bool is_graph_input = false; | |||
| for (size_t i = 1; i < cnode->inputs().size(); i++) { | |||
| auto input_node = cnode->input(i); | |||
| if (input_node->isa<CNode>()) { | |||
| is_graph_input = false; | |||
| auto ret = ConvertInputCNode(input_node, fb_node); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "ConvertInputCNode failed"; | |||
| @@ -357,6 +355,9 @@ int AnfExporter::SetOpInputNode(const CNodePtr &cnode, const std::unique_ptr<sch | |||
| MS_LOG(ERROR) << "ConvertInputParameter failed"; | |||
| return RET_ERROR; | |||
| } | |||
| if (!input_node->cast<ParameterPtr>()->has_default()) { | |||
| is_graph_input = true; | |||
| } | |||
| } else if (input_node->isa<ValueNode>()) { | |||
| auto ret = ConvertInputValueNode(input_node, meta_graphT, fb_node); | |||
| if (ret != RET_OK) { | |||
| @@ -382,7 +383,7 @@ void AnfExporter::SetOpOutputNode(const CNodePtr &cnode, const std::unique_ptr<s | |||
| auto tuple = std::reinterpret_pointer_cast<abstract::AbstractTuple>(cnode->abstract()); | |||
| for (size_t i = 0; i < tuple->size(); i++) { | |||
| auto msTensor = new schema::TensorT(); | |||
| msTensor->nodeType = schema::NodeType_Parameter; | |||
| msTensor->nodeType = schema::NodeType_CNode; | |||
| fb_node->outputIndex.emplace_back(meta_graphT->allTensors.size()); | |||
| if (tuple->size() == 1) { | |||
| node_id_map_[cnode_name] = meta_graphT->allTensors.size(); | |||
| @@ -399,7 +400,7 @@ void AnfExporter::SetOpOutputNode(const CNodePtr &cnode, const std::unique_ptr<s | |||
| } | |||
| } else { | |||
| auto ms_tensor = new schema::TensorT(); | |||
| ms_tensor->nodeType = schema::NodeType_Parameter; | |||
| ms_tensor->nodeType = schema::NodeType_CNode; | |||
| fb_node->outputIndex.emplace_back(meta_graphT->allTensors.size()); | |||
| node_id_map_[cnode_name] = meta_graphT->allTensors.size(); | |||
| meta_graphT->allTensors.emplace_back(ms_tensor); | |||
| @@ -59,8 +59,8 @@ int AnfImporterFromMetaGraphT::ConverterConstTensor() { | |||
| std::memcpy(tensor_data, tensor->data.data(), size); | |||
| param_value->set_tensor_addr(tensor_data); | |||
| param_value->set_tensor_size(size); | |||
| parameter->set_default_param(param_value); | |||
| } | |||
| parameter->set_default_param(param_value); | |||
| AddNode(i, parameter); | |||
| } | |||
| return RET_OK; | |||