|
|
|
@@ -4439,7 +4439,7 @@ class FusedSparseAdam(PrimitiveWithInfer): |
|
|
|
>>> epsilon = Tensor(1e-8, mstype.float32) |
|
|
|
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32) |
|
|
|
>>> indices = Tensor([0, 1], mstype.int32) |
|
|
|
>>> net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices) |
|
|
|
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices) |
|
|
|
>>> print(net.var.asnumpy()) |
|
|
|
[[[0.9996963 0.9996977 ]] |
|
|
|
[[0.99970144 0.9996992 ]] |
|
|
|
@@ -4587,7 +4587,7 @@ class FusedSparseLazyAdam(PrimitiveWithInfer): |
|
|
|
>>> epsilon = Tensor(1e-8, mstype.float32) |
|
|
|
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32) |
|
|
|
>>> indices = Tensor([0, 1], mstype.int32) |
|
|
|
>>> net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices) |
|
|
|
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices) |
|
|
|
>>> print(net.var.asnumpy()) |
|
|
|
[[[0.9996866 0.9997078]] |
|
|
|
[[0.9997037 0.9996869]] |
|
|
|
|