| @@ -116,3 +116,21 @@ int HSwish(const float *src, int length, float *dst) { | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| int HardTanh(const float *src, int length, float *dst, float min_val, float max_val) { | |||
| if (max_val <= min_val) { | |||
| return NNACL_ERR; | |||
| } | |||
| int i = 0; | |||
| for (i = 0; i < length; ++i) { | |||
| float in = src[i]; | |||
| if (in < min_val) { | |||
| dst[i] = min_val; | |||
| } else if (in > max_val) { | |||
| dst[i] = max_val; | |||
| } else { | |||
| dst[i] = in; | |||
| } | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| @@ -24,6 +24,8 @@ typedef struct ActivationParameter { | |||
| OpParameter op_parameter_; | |||
| int type_; | |||
| float alpha_; | |||
| float min_val_; | |||
| float max_val_; | |||
| } ActivationParameter; | |||
| #ifdef __cplusplus | |||
| @@ -35,6 +37,7 @@ int LRelu(const float *src, int length, float *dst, float alpha); | |||
| int Sigmoid(const float *src, int length, float *dst); | |||
| int Tanh(const float *src, int length, float *dst); | |||
| int HSwish(const float *src, int length, float *dst); | |||
| int HardTanh(const float *src, int length, float *dst, float min_val, float max_val); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| @@ -57,7 +57,8 @@ enum ActivationType : byte { | |||
| HSIGMOID = 13, | |||
| THRESHOLDRELU = 14, | |||
| LINEAR = 15, | |||
| UNKNOW = 16 | |||
| HARD_TANH = 16, | |||
| UNKNOW = 17 | |||
| } | |||
| enum ActivationGradType : byte { | |||
| NO_ACTIVATION = 0, | |||
| @@ -155,6 +156,8 @@ table SoftMax { | |||
| table Activation { | |||
| type: ActivationType = 0; | |||
| alpha: float = 0.2; | |||
| min_val: float = -1.0; | |||
| max_val: float = 1.0; | |||
| } | |||
| table ActivationGrad { | |||
| type: ActivationType = 0; | |||
| @@ -22,9 +22,13 @@ namespace lite { | |||
| #ifdef PRIMITIVE_WRITEABLE | |||
| int Activation::GetType() const { return this->primitive_->value.AsActivation()->type; } | |||
| float Activation::GetAlpha() const { return this->primitive_->value.AsActivation()->alpha; } | |||
| float Activation::GetMinVal() const { return this->primitive_->value.AsActivation()->min_val; } | |||
| float Activation::GetMaxVal() const { return this->primitive_->value.AsActivation()->max_val; } | |||
| void Activation::SetType(int type) { this->primitive_->value.AsActivation()->type = (schema::ActivationType)type; } | |||
| void Activation::SetAlpha(float alpha) { this->primitive_->value.AsActivation()->alpha = alpha; } | |||
| void Activation::SetMinVal(float min_val) { this->primitive_->value.AsActivation()->min_val = min_val; } | |||
| void Activation::SetMaxVal(float max_val) { this->primitive_->value.AsActivation()->max_val = max_val; } | |||
| int Activation::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) { | |||
| if (this->primitive_ == nullptr) { | |||
| @@ -63,13 +67,15 @@ int Activation::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuff | |||
| MS_LOG(ERROR) << "value_as_Activation return nullptr"; | |||
| return RET_ERROR; | |||
| } | |||
| auto val_offset = schema::CreateActivation(*fbb, attr->type(), attr->alpha()); | |||
| auto val_offset = schema::CreateActivation(*fbb, attr->type(), attr->alpha(), attr->min_val(), attr->max_val()); | |||
| auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Activation, val_offset.o); | |||
| fbb->Finish(prim_offset); | |||
| return RET_OK; | |||
| } | |||
| int Activation::GetType() const { return this->primitive_->value_as_Activation()->type(); } | |||
| float Activation::GetAlpha() const { return this->primitive_->value_as_Activation()->alpha(); } | |||
| float Activation::GetMinVal() const { return this->primitive_->value_as_Activation()->min_val(); } | |||
| float Activation::GetMaxVal() const { return this->primitive_->value_as_Activation()->max_val(); } | |||
| #endif | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -33,6 +33,8 @@ class Activation : public PrimitiveC { | |||
| int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override; | |||
| void SetType(int type); | |||
| void SetAlpha(float alpha); | |||
| void SetMinVal(float minVal); | |||
| void SetMaxVal(float maxVal); | |||
| #else | |||
| Activation() = default; | |||
| @@ -40,6 +42,8 @@ class Activation : public PrimitiveC { | |||
| #endif | |||
| int GetType() const; | |||
| float GetAlpha() const; | |||
| float GetMinVal() const; | |||
| float GetMaxVal() const; | |||
| }; | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -636,6 +636,8 @@ OpParameter *PopulateActivationParameter(const mindspore::lite::PrimitiveC *prim | |||
| reinterpret_cast<mindspore::lite::Activation *>(const_cast<mindspore::lite::PrimitiveC *>(primitive)); | |||
| act_param->type_ = static_cast<int>(activation->GetType()); | |||
| act_param->alpha_ = activation->GetAlpha(); | |||
| act_param->min_val_ = activation->GetMinVal(); | |||
| act_param->max_val_ = activation->GetMaxVal(); | |||
| return reinterpret_cast<OpParameter *>(act_param); | |||
| } | |||
| @@ -57,6 +57,8 @@ int ActivationCPUKernel::DoActivation(int task_id) { | |||
| error_code = Tanh(input_addr + stride * task_id, count, output_addr + stride * task_id); | |||
| } else if (type_ == schema::ActivationType_HSWISH) { | |||
| error_code = HSwish(input_addr + stride * task_id, count, output_addr + stride * task_id); | |||
| } else if (type_ == schema::ActivationType_HARD_TANH) { | |||
| error_code = HardTanh(input_addr + stride * task_id, count, output_addr + stride * task_id, min_val_, max_val_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Activation type error"; | |||
| return RET_ERROR; | |||
| @@ -30,6 +30,8 @@ class ActivationCPUKernel : public LiteKernel { | |||
| : LiteKernel(param, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) { | |||
| type_ = (reinterpret_cast<ActivationParameter *>(param))->type_; | |||
| alpha_ = (reinterpret_cast<ActivationParameter *>(param))->alpha_; | |||
| min_val_ = (reinterpret_cast<ActivationParameter *>(param))->min_val_; | |||
| max_val_ = (reinterpret_cast<ActivationParameter *>(param))->max_val_; | |||
| } | |||
| ~ActivationCPUKernel() override = default; | |||
| @@ -42,6 +44,8 @@ class ActivationCPUKernel : public LiteKernel { | |||
| int thread_count_; | |||
| int type_; | |||
| float alpha_; | |||
| float min_val_; | |||
| float max_val_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -126,4 +126,93 @@ TEST_F(TestActivationFp32, HSwishFp32) { | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| } | |||
| TEST_F(TestActivationFp32, HardTanh1) { | |||
| std::vector<lite::Tensor *> inputs_tensor; | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| ActivationParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Activation; | |||
| op_param.type_ = schema::ActivationType_HARD_TANH; | |||
| op_param.min_val_ = -1.0f; | |||
| op_param.max_val_ = 1.0f; | |||
| std::vector<float> input = {-2.0, -1.0, -0.5, 0.0, 0.5, 1.0, 5.0, 6.0}; | |||
| std::vector<int> in_shape = {8}; | |||
| lite::Tensor input0_tensor; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| std::vector<float> output(8); | |||
| std::vector<int> output_shape = {8}; | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::InnerContext ctx; | |||
| ctx.thread_num_ = 2; | |||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| std::vector<float> expect_output = {-1.0, -1.0, -0.5, 0.0, 0.5, 1.0, 1.0, 1.0}; | |||
| CompareOutputData(output.data(), expect_output.data(), 8, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| } | |||
| TEST_F(TestActivationFp32, HardTanh2) { | |||
| std::vector<lite::Tensor *> inputs_tensor; | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| ActivationParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_Activation; | |||
| op_param.type_ = schema::ActivationType_HARD_TANH; | |||
| op_param.min_val_ = -2.0f; | |||
| op_param.max_val_ = 2.0f; | |||
| std::vector<float> input = {-3.0, -2.0, -1.0, 0.0, 1.0, 5.0, 6.0, 7.0}; | |||
| std::vector<int> in_shape = {8}; | |||
| lite::Tensor input0_tensor; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| std::vector<float> output(8); | |||
| std::vector<int> output_shape = {8}; | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::InnerContext ctx; | |||
| ctx.thread_num_ = 2; | |||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| std::vector<float> expect_output = {-2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0}; | |||
| CompareOutputData(output.data(), expect_output.data(), 8, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| } | |||
| } // namespace mindspore | |||