From: @shallydeng Reviewed-by: @zichun_ye,@sunnybeike Signed-off-by: @sunnybeiketags/v1.1.0
| @@ -23,7 +23,7 @@ class Invert(Bijector): | |||||
| Args: | Args: | ||||
| bijector (Bijector): Base Bijector. | bijector (Bijector): Base Bijector. | ||||
| name (str): The name of the Bijector. Default: Invert. | |||||
| name (str): The name of the Bijector. Default: 'Invert' + bijector.name. | |||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| @@ -55,10 +55,10 @@ class Invert(Bijector): | |||||
| def __init__(self, | def __init__(self, | ||||
| bijector, | bijector, | ||||
| name='Invert'): | |||||
| name=""): | |||||
| param = dict(locals()) | param = dict(locals()) | ||||
| validator.check_value_type('bijector', bijector, [Bijector], "Invert") | validator.check_value_type('bijector', bijector, [Bijector], "Invert") | ||||
| name = (name + bijector.name) if name == 'Invert' else name | |||||
| name = name or ('Invert' + bijector.name) | |||||
| super(Invert, self).__init__(is_constant_jacobian=bijector.is_constant_jacobian, | super(Invert, self).__init__(is_constant_jacobian=bijector.is_constant_jacobian, | ||||
| is_injective=bijector.is_injective, | is_injective=bijector.is_injective, | ||||
| name=name, | name=name, | ||||
| @@ -27,7 +27,7 @@ class Bernoulli(Distribution): | |||||
| Bernoulli Distribution. | Bernoulli Distribution. | ||||
| Args: | Args: | ||||
| probs (float, list, numpy.ndarray, Tensor, Parameter): The probability of that the outcome is 1. | |||||
| probs (float, list, numpy.ndarray, Tensor): The probability of that the outcome is 1. | |||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32. | ||||
| name (str): The name of the distribution. Default: 'Bernoulli'. | name (str): The name of the distribution. Default: 'Bernoulli'. | ||||
| @@ -29,9 +29,9 @@ class Beta(Distribution): | |||||
| Beta distribution. | Beta distribution. | ||||
| Args: | Args: | ||||
| concentration1 (list, numpy.ndarray, Tensor, Parameter): The concentration1, | |||||
| concentration1 (list, numpy.ndarray, Tensor): The concentration1, | |||||
| also know as alpha of the Beta distribution. | also know as alpha of the Beta distribution. | ||||
| concentration0 (list, numpy.ndarray, Tensor, Parameter): The concentration0, also know as | |||||
| concentration0 (list, numpy.ndarray, Tensor): The concentration0, also know as | |||||
| beta of the Beta distribution. | beta of the Beta distribution. | ||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| @@ -154,9 +154,9 @@ class Beta(Distribution): | |||||
| # As some operators can't accept scalar input, check the type here | # As some operators can't accept scalar input, check the type here | ||||
| if isinstance(concentration0, float): | if isinstance(concentration0, float): | ||||
| raise TypeError("Parameter concentration0 can't be scalar") | |||||
| raise TypeError("Input concentration0 can't be scalar") | |||||
| if isinstance(concentration1, float): | if isinstance(concentration1, float): | ||||
| raise TypeError("Parameter concentration1 can't be scalar") | |||||
| raise TypeError("Input concentration1 can't be scalar") | |||||
| super(Beta, self).__init__(seed, dtype, name, param) | super(Beta, self).__init__(seed, dtype, name, param) | ||||
| @@ -31,7 +31,7 @@ class Categorical(Distribution): | |||||
| Create a categorical distribution parameterized by event probabilities. | Create a categorical distribution parameterized by event probabilities. | ||||
| Args: | Args: | ||||
| probs (Tensor, list, numpy.ndarray, Parameter): Event probabilities. | |||||
| probs (Tensor, list, numpy.ndarray): Event probabilities. | |||||
| seed (int): The global seed is used in sampling. Global seed is used if it is None. Default: None. | seed (int): The global seed is used in sampling. Global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32. | ||||
| name (str): The name of the distribution. Default: Categorical. | name (str): The name of the distribution. Default: Categorical. | ||||
| @@ -28,8 +28,8 @@ class Cauchy(Distribution): | |||||
| Cauchy distribution. | Cauchy distribution. | ||||
| Args: | Args: | ||||
| loc (int, float, list, numpy.ndarray, Tensor, Parameter): The location of the Cauchy distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor, Parameter): The scale of the Cauchy distribution. | |||||
| loc (int, float, list, numpy.ndarray, Tensor): The location of the Cauchy distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor): The scale of the Cauchy distribution. | |||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| name (str): The name of the distribution. Default: 'Cauchy'. | name (str): The name of the distribution. Default: 'Cauchy'. | ||||
| @@ -28,7 +28,7 @@ class Exponential(Distribution): | |||||
| Example class: Exponential Distribution. | Example class: Exponential Distribution. | ||||
| Args: | Args: | ||||
| rate (float, list, numpy.ndarray, Tensor, Parameter): The inverse scale. | |||||
| rate (float, list, numpy.ndarray, Tensor): The inverse scale. | |||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| name (str): The name of the distribution. Default: 'Exponential'. | name (str): The name of the distribution. Default: 'Exponential'. | ||||
| @@ -29,9 +29,9 @@ class Gamma(Distribution): | |||||
| Gamma distribution. | Gamma distribution. | ||||
| Args: | Args: | ||||
| concentration (list, numpy.ndarray, Tensor, Parameter): The concentration, | |||||
| concentration (list, numpy.ndarray, Tensor): The concentration, | |||||
| also know as alpha of the Gamma distribution. | also know as alpha of the Gamma distribution. | ||||
| rate (list, numpy.ndarray, Tensor, Parameter): The rate, also know as | |||||
| rate (list, numpy.ndarray, Tensor): The rate, also know as | |||||
| beta of the Gamma distribution. | beta of the Gamma distribution. | ||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| @@ -150,9 +150,9 @@ class Gamma(Distribution): | |||||
| # As some operators can't accept scalar input, check the type here | # As some operators can't accept scalar input, check the type here | ||||
| if isinstance(concentration, (int, float)): | if isinstance(concentration, (int, float)): | ||||
| raise TypeError("Parameter concentration can't be scalar") | |||||
| raise TypeError("Input concentration can't be scalar") | |||||
| if isinstance(rate, (int, float)): | if isinstance(rate, (int, float)): | ||||
| raise TypeError("Parameter rate can't be scalar") | |||||
| raise TypeError("Input rate can't be scalar") | |||||
| super(Gamma, self).__init__(seed, dtype, name, param) | super(Gamma, self).__init__(seed, dtype, name, param) | ||||
| @@ -30,7 +30,7 @@ class Geometric(Distribution): | |||||
| when the first success is achieved. | when the first success is achieved. | ||||
| Args: | Args: | ||||
| probs (float, list, numpy.ndarray, Tensor, Parameter): The probability of success. | |||||
| probs (float, list, numpy.ndarray, Tensor): The probability of success. | |||||
| seed (int): The seed used in sampling. Global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. Global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32. | ||||
| name (str): The name of the distribution. Default: 'Geometric'. | name (str): The name of the distribution. Default: 'Geometric'. | ||||
| @@ -29,8 +29,8 @@ class Gumbel(TransformedDistribution): | |||||
| Gumbel distribution. | Gumbel distribution. | ||||
| Args: | Args: | ||||
| loc (int, float, list, numpy.ndarray, Tensor, Parameter): The location of Gumbel distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor, Parameter): The scale of Gumbel distribution. | |||||
| loc (int, float, list, numpy.ndarray, Tensor): The location of Gumbel distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor): The scale of Gumbel distribution. | |||||
| seed (int): the seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): the seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. | dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. | ||||
| name (str): the name of the distribution. Default: 'Gumbel'. | name (str): the name of the distribution. Default: 'Gumbel'. | ||||
| @@ -28,8 +28,8 @@ class LogNormal(msd.TransformedDistribution): | |||||
| logarithm is normally distributed. It is constructed as the exponential transformation of a Normal distribution. | logarithm is normally distributed. It is constructed as the exponential transformation of a Normal distribution. | ||||
| Args: | Args: | ||||
| loc (int, float, list, numpy.ndarray, Tensor, Parameter): The mean of the underlying Normal distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor, Parameter): The standard deviation of the underlying | |||||
| loc (int, float, list, numpy.ndarray, Tensor): The mean of the underlying Normal distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor): The standard deviation of the underlying | |||||
| Normal distribution. | Normal distribution. | ||||
| seed (int): the seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): the seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. | dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. | ||||
| @@ -28,8 +28,8 @@ class Logistic(Distribution): | |||||
| Logistic distribution. | Logistic distribution. | ||||
| Args: | Args: | ||||
| loc (int, float, list, numpy.ndarray, Tensor, Parameter): The location of the Logistic distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor, Parameter): The scale of the Logistic distribution. | |||||
| loc (int, float, list, numpy.ndarray, Tensor): The location of the Logistic distribution. | |||||
| scale (int, float, list, numpy.ndarray, Tensor): The scale of the Logistic distribution. | |||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| name (str): The name of the distribution. Default: 'Logistic'. | name (str): The name of the distribution. Default: 'Logistic'. | ||||
| @@ -28,8 +28,8 @@ class Normal(Distribution): | |||||
| Normal distribution. | Normal distribution. | ||||
| Args: | Args: | ||||
| mean (int, float, list, numpy.ndarray, Tensor, Parameter): The mean of the Normal distribution. | |||||
| sd (int, float, list, numpy.ndarray, Tensor, Parameter): The standard deviation of the Normal distribution. | |||||
| mean (int, float, list, numpy.ndarray, Tensor): The mean of the Normal distribution. | |||||
| sd (int, float, list, numpy.ndarray, Tensor): The standard deviation of the Normal distribution. | |||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| name (str): The name of the distribution. Default: 'Normal'. | name (str): The name of the distribution. Default: 'Normal'. | ||||
| @@ -29,7 +29,7 @@ class Poisson(Distribution): | |||||
| Poisson Distribution. | Poisson Distribution. | ||||
| Args: | Args: | ||||
| rate (list, numpy.ndarray, Tensor, Parameter): The rate of the Poisson distribution.. | |||||
| rate (list, numpy.ndarray, Tensor): The rate of the Poisson distribution.. | |||||
| seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| name (str): The name of the distribution. Default: 'Poisson'. | name (str): The name of the distribution. Default: 'Poisson'. | ||||
| @@ -123,7 +123,7 @@ class Poisson(Distribution): | |||||
| # As some operators can't accept scalar input, check the type here | # As some operators can't accept scalar input, check the type here | ||||
| if isinstance(rate, (int, float)): | if isinstance(rate, (int, float)): | ||||
| raise TypeError("Parameter rate can't be scalar") | |||||
| raise TypeError("Input rate can't be scalar") | |||||
| super(Poisson, self).__init__(seed, dtype, name, param) | super(Poisson, self).__init__(seed, dtype, name, param) | ||||
| @@ -28,8 +28,8 @@ class Uniform(Distribution): | |||||
| Example class: Uniform Distribution. | Example class: Uniform Distribution. | ||||
| Args: | Args: | ||||
| low (int, float, list, numpy.ndarray, Tensor, Parameter): The lower bound of the distribution. | |||||
| high (int, float, list, numpy.ndarray, Tensor, Parameter): The upper bound of the distribution. | |||||
| low (int, float, list, numpy.ndarray, Tensor): The lower bound of the distribution. | |||||
| high (int, float, list, numpy.ndarray, Tensor): The upper bound of the distribution. | |||||
| seed (int): The seed uses in sampling. The global seed is used if it is None. Default: None. | seed (int): The seed uses in sampling. The global seed is used if it is None. Default: None. | ||||
| dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. | ||||
| name (str): The name of the distribution. Default: 'Uniform'. | name (str): The name of the distribution. Default: 'Uniform'. | ||||