|
|
|
@@ -32,7 +32,7 @@ class Net(nn.Cell): |
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_net(): |
|
|
|
def test_net_fp32(): |
|
|
|
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) |
|
|
|
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) |
|
|
|
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) |
|
|
|
@@ -81,3 +81,129 @@ def test_net(): |
|
|
|
expect = x4_np <= y4_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_net_fp16(): |
|
|
|
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) |
|
|
|
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) |
|
|
|
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) |
|
|
|
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float16) |
|
|
|
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float16) |
|
|
|
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) |
|
|
|
x3_np = np.random.randint(1, 5, 1).astype(np.float16) |
|
|
|
y3_np = np.random.randint(1, 5, 1).astype(np.float16) |
|
|
|
x4_np = np.array(768).astype(np.float16) |
|
|
|
y4_np = np.array(3072.5).astype(np.float16) |
|
|
|
|
|
|
|
x0 = Tensor(x0_np) |
|
|
|
y0 = Tensor(y0_np) |
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
x2 = Tensor(x2_np) |
|
|
|
y2 = Tensor(y2_np) |
|
|
|
x3 = Tensor(x3_np) |
|
|
|
y3 = Tensor(y3_np) |
|
|
|
x4 = Tensor(x4_np) |
|
|
|
y4 = Tensor(y4_np) |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU') |
|
|
|
net = Net() |
|
|
|
out = net(x0, y0).asnumpy() |
|
|
|
expect = x0_np <= y0_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
out = net(x1, y1).asnumpy() |
|
|
|
expect = x1_np <= y1_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
out = net(x2, y2).asnumpy() |
|
|
|
expect = x2_np <= y2_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
out = net(x3, y3).asnumpy() |
|
|
|
expect = x3_np <= y3_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
out = net(x4, y4).asnumpy() |
|
|
|
expect = x4_np <= y4_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_net_int32(): |
|
|
|
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int32) |
|
|
|
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int32) |
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU') |
|
|
|
net = Net() |
|
|
|
out = net(x1, y1).asnumpy() |
|
|
|
expect = x1_np <= y1_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_net_int64(): |
|
|
|
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int64) |
|
|
|
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int64) |
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU') |
|
|
|
net = Net() |
|
|
|
out = net(x1, y1).asnumpy() |
|
|
|
expect = x1_np <= y1_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_net_float64(): |
|
|
|
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float64) |
|
|
|
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float64) |
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU') |
|
|
|
net = Net() |
|
|
|
out = net(x1, y1).asnumpy() |
|
|
|
expect = x1_np <= y1_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_cpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_net_int16(): |
|
|
|
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int16) |
|
|
|
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int16) |
|
|
|
x1 = Tensor(x1_np) |
|
|
|
y1 = Tensor(y1_np) |
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU') |
|
|
|
net = Net() |
|
|
|
out = net(x1, y1).asnumpy() |
|
|
|
expect = x1_np <= y1_np |
|
|
|
assert np.all(out == expect) |
|
|
|
assert out.shape == expect.shape |