| @@ -1267,12 +1267,20 @@ class BatchNorm(PrimitiveWithInfer): | |||||
| Default: "NCHW". | Default: "NCHW". | ||||
| Inputs: | Inputs: | ||||
| If `is_training` is False, inputs are Tensors. | |||||
| - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type. | - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type. | ||||
| - **scale** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type. | - **scale** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type. | ||||
| - **bias** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`. | - **bias** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`. | ||||
| - **mean** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type. | - **mean** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type. | ||||
| - **variance** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `mean`. | - **variance** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `mean`. | ||||
| If `is_training` is True, `scale`, `bias`, `mean` and `variance` are Parameters. | |||||
| - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type. | |||||
| - **scale** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type. | |||||
| - **bias** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`. | |||||
| - **mean** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type. | |||||
| - **variance** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `mean`. | |||||
| Outputs: | Outputs: | ||||
| Tuple of 5 Tensor, the normalized inputs and the updated parameters. | Tuple of 5 Tensor, the normalized inputs and the updated parameters. | ||||