Browse Source

[control flow]update st testcases for while bp

pull/15413/head
liangzelang 4 years ago
parent
commit
971c2d3c6d
1 changed files with 120 additions and 18 deletions
  1. +120
    -18
      tests/st/control/test_cont_grad.py

+ 120
- 18
tests/st/control/test_cont_grad.py View File

@@ -104,6 +104,10 @@ def test_while_with_const_param_grad():
assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_variable_grad():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -166,7 +170,10 @@ def test_while_with_param_forward():
expect = np.array([[[6, 8], [10, 12]], [[19, 22], [25, 28]]], dtype=np.int32)
assert np.allclose(graph_output.asnumpy(), expect, 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_endless_case():
"""endless case when optimization"""
class MyWhileNet(nn.Cell):
@@ -235,6 +242,10 @@ def test_while_with_param_grad():
expect = np.array([[[2, 2], [2, 2]], [[2, 2], [2, 2]]], dtype=np.int32)
assert np.allclose(graph_output[0].asnumpy(), expect, 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_forward_with_const_branch():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -266,7 +277,10 @@ def test_while_with_param_forward_with_const_branch():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_opt_endless():
"""endless during optimization case"""
class MyWhileNet(nn.Cell):
@@ -307,6 +321,12 @@ def test_while_opt_endless():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)


@pytest.mark.skip(reason="not supported yet")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_no_while_call():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -336,7 +356,10 @@ def test_no_while_call():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_grad_with_const_branch():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -377,6 +400,11 @@ def test_while_with_param_grad_with_const_branch():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.skip(reason="not supported yet")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_while_with_param_grad_with_const_branch():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -420,6 +448,10 @@ def test_for_while_with_param_grad_with_const_branch():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_while_with_param_grad_basic():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -460,6 +492,10 @@ def test_for_while_with_param_grad_basic():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_while_with_param_grad_normal():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -500,6 +536,10 @@ def test_for_while_with_param_grad_normal():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -537,6 +577,10 @@ def test_while_with_param_basic_grad():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad_mul():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -574,6 +618,10 @@ def test_while_with_param_basic_grad_mul():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad_two():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -613,6 +661,10 @@ def test_while_with_param_basic_grad_two():
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_basic_grad_three():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -654,6 +706,10 @@ def test_while_with_param_basic_grad_three():
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_if_with_param_grad():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -694,6 +750,11 @@ def test_while_if_with_param_grad():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.skip(reason="not supported yet")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_while_with_param_grad_not_enter_while():
class MyWhileNet(nn.Cell):
def __init__(self):
@@ -730,6 +791,10 @@ def test_while_with_param_grad_not_enter_while():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_forward():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -762,7 +827,10 @@ def test_with_param_if_by_if_forward():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_grad_inputs():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -801,6 +869,10 @@ def test_with_param_if_by_if_grad_inputs():
assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_grad_parameter():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -838,6 +910,10 @@ def test_with_param_if_by_if_grad_parameter():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_with_param_if_by_if_grad_param_excute_null():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -873,6 +949,10 @@ def test_with_param_if_by_if_grad_param_excute_null():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_return_inside_grad():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -910,6 +990,10 @@ def test_if_by_if_return_inside_grad():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -948,7 +1032,10 @@ def test_if_by_if_forward():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward_control_tuple_switch():
"""tuple_get from switch op will generate new switch inside to eliminate tuple_get"""
class Branch3Net(nn.Cell):
@@ -1012,9 +1099,10 @@ def test_if_by_if_forward_control_tuple_switch():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)




@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward_control_inside_net():
class Branch3Net(nn.Cell):
def __init__(self):
@@ -1077,8 +1165,10 @@ def test_if_by_if_forward_control_inside_net():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)



@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward_use_namespace():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -1117,7 +1207,10 @@ def test_if_by_if_forward_use_namespace():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward_use_global_op():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -1160,7 +1253,10 @@ def test_if_by_if_forward_use_global_op():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_with_if_by_if_forward():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -1190,8 +1286,10 @@ def test_for_with_if_by_if_forward():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)



@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_for_with_if_by_if_forward_namespace():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -1224,7 +1322,10 @@ def test_for_with_if_by_if_forward_namespace():
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)



@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward_const_branch_inner():
class MyIfByIfNet(nn.Cell):
def __init__(self):
@@ -1267,9 +1368,10 @@ def test_if_by_if_forward_const_branch_inner():
pynative_output = net(idx, end, x)
assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)




@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_forward_all_const_branch():
class MyIfByIfNet(nn.Cell):
def __init__(self):


Loading…
Cancel
Save