|
|
|
@@ -438,18 +438,23 @@ class Model: |
|
|
|
cb_params (_InternalCallbackParam): Callback parameters. Default: None. |
|
|
|
sink_size (int): Control the amount of data in each sink. Default: -1. |
|
|
|
""" |
|
|
|
is_graph = (context.get_context("mode") == context.GRAPH_MODE) |
|
|
|
if sink_size == -1: |
|
|
|
epoch_num = epoch |
|
|
|
else: |
|
|
|
epoch_num = math.ceil(epoch * sink_size / train_dataset.get_dataset_size()) |
|
|
|
train_dataset.__total_batch__ = epoch * sink_size |
|
|
|
if is_graph: |
|
|
|
epoch_num = math.ceil(epoch * sink_size / train_dataset.get_dataset_size()) |
|
|
|
train_dataset.__total_batch__ = epoch * sink_size |
|
|
|
else: |
|
|
|
sink_size = -1 |
|
|
|
epoch_num = epoch |
|
|
|
logger.warning("Loop sink is not supported in PyNative mode, so it will be performed with no loop sink") |
|
|
|
|
|
|
|
cb_params.cur_step_num = 0 |
|
|
|
cb_params.dataset_sink_mode = True |
|
|
|
|
|
|
|
run_context = RunContext(cb_params) |
|
|
|
list_callback.begin(run_context) |
|
|
|
is_graph = (context.get_context("mode") == context.GRAPH_MODE) |
|
|
|
# used to stop training for early stop, such as stopAtTIme or stopATStep |
|
|
|
should_stop = False |
|
|
|
dataset_helper = None |
|
|
|
|