| @@ -1219,14 +1219,14 @@ class ApplyMomentum(PrimitiveWithInfer): | |||
| gradient_scale (float): The scale of the gradient. Default: 1.0. | |||
| Inputs: | |||
| - **variable** (Tensor) - Weights to be update. | |||
| - **variable** (Tensor) - Weights to be updated. | |||
| - **accumulation** (Tensor) - Accumulated gradient value by moment weight. | |||
| - **learning_rate** (float) - Learning rate. | |||
| - **gradient** (Tensor) - Gradients. | |||
| - **momentum** (float) - Momentum. | |||
| Outputs: | |||
| Tensor, parameters to be update. | |||
| Tensor, parameters to be updated. | |||
| Examples: | |||
| >>> net = ResNet50() | |||
| @@ -1318,15 +1318,15 @@ class SGD(PrimitiveWithInfer): | |||
| nesterov (bool): Enable Nesterov momentum. Default: False. | |||
| Inputs: | |||
| - **parameters** (Tensor) - Parameters to be update. | |||
| - **parameters** (Tensor) - Parameters to be updated. | |||
| - **gradient** (Tensor) - Gradients. | |||
| - **learning_rate** (Tensor) - Learning rate. e.g. Tensor(0.1, mindspore.float32). | |||
| - **accum** (Tensor) - Accum(velocity) to be update. | |||
| - **accum** (Tensor) - Accum(velocity) to be updated. | |||
| - **momentum** (Tensor) - Momentum. e.g. Tensor(0.1, mindspore.float32). | |||
| - **stat** (Tensor) - States to be updated with the same shape as gradient. | |||
| Outputs: | |||
| Tensor, parameters to be update. | |||
| Tensor, parameters to be updated. | |||
| """ | |||
| @prim_attr_register | |||
| @@ -2141,7 +2141,7 @@ class Adam(PrimitiveWithInfer): | |||
| If False, updates the gradients without using NAG. Default: False. | |||
| Inputs: | |||
| - **var** (Tensor) - Weights to be update. | |||
| - **var** (Tensor) - Weights to be updated. | |||
| - **m** (Tensor) - The 1st moment vector in the updating formula. | |||
| - **v** (Tensor) - the 2nd moment vector in the updating formula. | |||
| - **beta1_power** (float) - :math:`beta_1^t` in the updating formula. | |||
| @@ -2251,8 +2251,8 @@ class SparseApplyAdagrad(PrimitiveWithInfer): | |||
| use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False. | |||
| Inputs: | |||
| - **var** (Tensor) - Variable to be update. The type must be float32. | |||
| - **accum** (Tensor) - Accum to be update. The shape must be the same as `var`'s shape, | |||
| - **var** (Tensor) - Variable to be updated. The type must be float32. | |||
| - **accum** (Tensor) - Accum to be updated. The shape must be the same as `var`'s shape, | |||
| the type must be float32. | |||
| - **grad** (Tensor) - Gradient. The shape must be the same as `var`'s shape | |||
| except first dimension, the type must be float32. | |||
| @@ -2372,7 +2372,7 @@ class LARSUpdate(PrimitiveWithInfer): | |||
| use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False. | |||
| Inputs: | |||
| - **weight** (Tensor) - The weight to be update. | |||
| - **weight** (Tensor) - The weight to be updated. | |||
| - **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight. | |||
| - **norm_weight** (Tensor) - A scalar tensor, representing the square sum of weight. | |||
| - **norm_gradient** (Tensor) - A scalar tensor, representing the square sum of gradient. | |||