Browse Source

add single quotes, modify the formula and parameters in the comment

tags/v0.7.0-beta
李嘉琪 5 years ago
parent
commit
95ef7df76a
1 changed files with 8 additions and 9 deletions
  1. +8
    -9
      mindspore/nn/learning_rate_schedule.py

+ 8
- 9
mindspore/nn/learning_rate_schedule.py View File

@@ -59,7 +59,7 @@ class ExponentialDecayLR(LearningRateSchedule):
For the i-th step, the formula of computing decayed_learning_rate[i] is:

.. math::
decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}}
decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}

Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
@@ -158,7 +158,7 @@ class InverseDecayLR(LearningRateSchedule):
For the i-th step, the formula of computing decayed_learning_rate[i] is:

.. math::
decayed\_learning\_rate[i] = learning\_rate / (1 + decay\_rate * p}
decayed\_learning\_rate[i] = learning\_rate / (1 + decay\_rate * p)

Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
@@ -166,7 +166,7 @@ class InverseDecayLR(LearningRateSchedule):
Args:
learning_rate (float): The initial value of learning rate.
decay_rate (float): The decay rate.
decay_epoch (int): A value used to calculate decayed learning rate.
decay_steps (int): A value used to calculate decayed learning rate.
is_stair (bool): If true, learning rate decay once every `decay_steps` times. Default: False.

Inputs:
@@ -207,9 +207,8 @@ class CosineDecayLR(LearningRateSchedule):

.. math::
decayed\_learning\_rate[i] = min\_learning\_rate + 0.5 * (max\_learning\_rate - min\_learning\_rate) *
(1 + cos(\frac{current\_epoch}{decay\_epoch}\pi))
(1 + cos(\frac{current\_step}{decay\_steps}\pi))

Where :math:`current\_epoch=floor(\frac{i}{step\_per\_epoch})`.

Args:
min_lr (float): The minimum value of learning rate.
@@ -262,11 +261,11 @@ class PolynomialDecayLR(LearningRateSchedule):

.. math::
decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) *
(1 - tmp\_step / tmp\_decay\_step)^{power} + end\_learning\_rate
(1 - tmp\_step / tmp\_decay\_steps)^{power} + end\_learning\_rate

Where :math:`tmp\_step=min(global\_step, decay\_step).
Where :math:`tmp\_step=min(current\_step, decay\_steps).
If `update_decay_steps` is true, update the value of `tmp_decay_step` every `decay_steps`. The formula
is :math:`tmp\_decay\_step = decay\_step * ceil(global\_step / decay\_steps)`
is :math:`tmp\_decay\_steps = decay\_steps * ceil(current\_step / decay\_steps)`

Args:
learning_rate (float): The initial value of learning rate.
@@ -335,7 +334,7 @@ class WarmUpLR(LearningRateSchedule):
.. math::
warmup\_learning\_rate[i] = learning\_rate * tmp\_step / warmup\_steps

Where :math:`tmp\_step=min(global\_step, warmup\_steps).
Where :math:`tmp\_step=min(current\_step, warmup\_steps)`.

Args:
learning_rate (float): The initial value of learning rate.


Loading…
Cancel
Save