| @@ -52,9 +52,11 @@ constexpr auto kCacheSwapTable = "CacheSwapTable"; | |||
| constexpr auto kSubAndFilter = "SubAndFilter"; | |||
| constexpr auto kPadAndShift = "PadAndShift"; | |||
| constexpr auto kCustRunApi = "RunCpuKernel"; | |||
| constexpr auto kDropout3d = "Dropout3d"; | |||
| constexpr auto kDropout2D = "Dropout2D"; | |||
| constexpr auto kDropout3D = "Dropout3D"; | |||
| const std::set<std::string> kCustAiCpuKernelOps{kIdentity}; | |||
| const std::set<std::string> kCacheKernelOps{kUpdateCache, kCacheSwapTable, kSubAndFilter, kPadAndShift, kDropout3d}; | |||
| const std::set<std::string> kCacheKernelOps{kUpdateCache, kCacheSwapTable, kSubAndFilter, | |||
| kPadAndShift, kDropout3D, kDropout2D}; | |||
| struct AicpuParamHead { | |||
| uint32_t length; // Total length: include cunstom message | |||
| @@ -1263,6 +1263,46 @@ def get_bprop_dropout(self): | |||
| return bprop | |||
| @bprop_getters.register(P.Dropout2D) | |||
| def get_bprop_dropout2d(self): | |||
| """Grad definition for `Dropout2D` operation.""" | |||
| dtype = P.DType() | |||
| cast = P.Cast() | |||
| mul = P.Mul() | |||
| keep_prob = self.keep_prob | |||
| def bprop(x, out, dout): | |||
| _, mask = dout | |||
| y = cast(mask, mstype.float32) | |||
| if keep_prob != 0: | |||
| y = y * (1 / keep_prob) | |||
| y = mul(x, y) | |||
| y = cast(y, dtype(x)) | |||
| return (y,) | |||
| return bprop | |||
| @bprop_getters.register(P.Dropout3D) | |||
| def get_bprop_dropout3d(self): | |||
| """Grad definition for `Dropout3D` operation.""" | |||
| dtype = P.DType() | |||
| cast = P.Cast() | |||
| mul = P.Mul() | |||
| keep_prob = self.keep_prob | |||
| def bprop(x, out, dout): | |||
| _, mask = dout | |||
| y = cast(mask, mstype.float32) | |||
| if keep_prob != 0: | |||
| y = y * (1 / keep_prob) | |||
| y = mul(x, y) | |||
| y = cast(y, dtype(x)) | |||
| return (y,) | |||
| return bprop | |||
| @bprop_getters.register(P.CTCLoss) | |||
| def get_bprop_ctc_loss(self): | |||
| """Grad definition for `CTCLoss` operation""" | |||
| @@ -27,6 +27,7 @@ from .unique_with_pad import _unique_with_pad_aicpu | |||
| from .sub_and_filter import _sub_and_filter_aicpu | |||
| from .pad_and_shift import _pad_and_shift_aicpu | |||
| from .dropout_genmask import _dropout_genmask_aicpu | |||
| from .dropout2d import _dropout2d_aicpu | |||
| from .dropout3d import _dropout3d_aicpu | |||
| from .get_next import _get_next_aicpu | |||
| from .print_tensor import _print_aicpu | |||
| @@ -0,0 +1,42 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Dropout2D op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| dropout2d_op_info = AiCPURegOp("Dropout2D") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .output(1, "mask", "required") \ | |||
| .attr("keep_prob", "float") \ | |||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.BOOL_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(dropout2d_op_info) | |||
| def _dropout2d_aicpu(): | |||
| """Dropout2D AiCPU register""" | |||
| return | |||
| @@ -13,30 +13,30 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Dropout3d op""" | |||
| """Dropout3D op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| dropout3d_op_info = AiCPURegOp("Dropout3d") \ | |||
| dropout3d_op_info = AiCPURegOp("Dropout3D") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .output(1, "mask", "required") \ | |||
| .attr("keep_prob", "float") \ | |||
| .attr("inplace", "bool") \ | |||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I8_Default, DataType.I8_Default) \ | |||
| .dtype_format(DataType.I16_Default, DataType.I16_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default) \ | |||
| .dtype_format(DataType.U8_Default, DataType.U8_Default) \ | |||
| .dtype_format(DataType.U16_Default, DataType.U16_Default) \ | |||
| .dtype_format(DataType.U32_Default, DataType.U32_Default) \ | |||
| .dtype_format(DataType.U64_Default, DataType.U64_Default) \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.F64_Default, DataType.F64_Default) \ | |||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.BOOL_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(dropout3d_op_info) | |||
| def _dropout3d_aicpu(): | |||
| """Dropout3d AiCPU register""" | |||
| """Dropout3D AiCPU register""" | |||
| return | |||
| @@ -64,7 +64,7 @@ from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, U | |||
| from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, AdamNoUpdateParam, ApplyMomentum, BatchNorm, | |||
| BiasAdd, Conv2D, | |||
| DepthwiseConv2dNative, | |||
| DropoutDoMask, Dropout, Dropout3d, DropoutGenMask, Flatten, | |||
| DropoutDoMask, Dropout, Dropout2D, Dropout3D, DropoutGenMask, Flatten, | |||
| FusedBatchNorm, FusedBatchNormEx, InstanceNorm, BNTrainingReduce, BNTrainingUpdate, | |||
| GeLU, Gelu, FastGeLU, FastGelu, Elu, | |||
| @@ -243,6 +243,8 @@ __all__ = [ | |||
| 'DropoutDoMask', | |||
| 'DropoutGenMask', | |||
| 'Dropout', | |||
| 'Dropout2D', | |||
| 'Dropout3D', | |||
| 'Neg', | |||
| 'InplaceAdd', | |||
| 'InplaceSub', | |||
| @@ -6657,22 +6657,77 @@ class Dropout(PrimitiveWithCheck): | |||
| validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name) | |||
| class Dropout3d(PrimitiveWithInfer): | |||
| class Dropout2D(PrimitiveWithInfer): | |||
| """ | |||
| During training, randomly zeroes some of the channels of the input tensor | |||
| with probability keep_prob from a Bernoulli distribution. | |||
| with probability 1-`keep_prob` from a Bernoulli distribution. | |||
| Args: | |||
| keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8, | |||
| means dropping out %20 of channels. Default: 0.5. | |||
| inplace (bool): When `inplace` is True, this operation will be done in-place. Default: False. | |||
| means dropping out 20% of channels. Default: 0.5. | |||
| Inputs: | |||
| - **input** (Tensor) - A 4-D tensor with shape :math:`(N, C, H, W)`. | |||
| Outputs: | |||
| - **output** (Tensor) - with the same shape and data type as the input tensor. | |||
| - **mask** (Tensor[bool]) - with the same shape as the input tensor. | |||
| Raises: | |||
| TypeError: If the data type of `keep_prob` is not float. | |||
| ValueError: If `keep_prob` is out of the range [0.0, 1.0]; | |||
| or if the dim of input is not 4-D. | |||
| Supported Platforms: | |||
| ``Ascend`` | |||
| Examples: | |||
| >>> dropout = ops.Dropout2D(keep_prob=0.5) | |||
| >>> x = Tensor(np.random.randn(2, 1, 2, 3), mindspore.float32) | |||
| >>> output, mask = dropout(x) | |||
| >>> print(output) | |||
| [[[[0. 0. 0.] | |||
| [0. 0. 0.]]] | |||
| [[[0.88 -2.98 -0.01] | |||
| [2.16 -0.34 1.57]]]] | |||
| >>> print(mask) | |||
| [[[[False False False] | |||
| [False False False]]] | |||
| [[[True True True] | |||
| [True True True]]]] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, keep_prob=0.5): | |||
| self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) | |||
| self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name) | |||
| def infer_shape(self, x_shape): | |||
| validator.check_int(len(x_shape), 4, Rel.EQ, "dim of input", self.name) | |||
| return x_shape, x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| valid_dtypes = mstype.int_type + (mstype.float16, mstype.float32) | |||
| validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name) | |||
| mask_dtype = mstype.tensor_type(mstype.bool_) | |||
| return x_dtype, mask_dtype | |||
| class Dropout3D(PrimitiveWithInfer): | |||
| """ | |||
| During training, randomly zeroes some of the channels of the input tensor | |||
| with probability 1-`keep_prob` from a Bernoulli distribution. | |||
| Args: | |||
| keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8, | |||
| means dropping out 20% of channels. Default: 0.5. | |||
| Inputs: | |||
| - **input** (Tensor) - A 5-D tensor with shape :math:`(N, C, D, H, W)`. | |||
| When `inplace` is True, `input` should be Parameter. | |||
| Outputs: | |||
| - **output** (Tensor) - with the same shape as the input tensor. | |||
| - **output** (Tensor) - with the same shape and data type as the input tensor. | |||
| - **mask** (Tensor[bool]) - with the same shape as the input tensor. | |||
| Raises: | |||
| TypeError: If the data type of `keep_prob` is not float. | |||
| @@ -6683,30 +6738,35 @@ class Dropout3d(PrimitiveWithInfer): | |||
| ``Ascend`` | |||
| Examples: | |||
| >>> dropout = ops.Dropout3d(keep_prob=0.5) | |||
| >>> dropout = ops.Dropout3D(keep_prob=0.5) | |||
| >>> x = Tensor(np.random.randn(2, 1, 2, 1, 2), mindspore.float32) | |||
| >>> output = dropout(x) | |||
| >>> output, mask = dropout(x) | |||
| >>> print(output) | |||
| [[[[[0. 0.]] | |||
| [[0. 0.]]]] | |||
| [[[[-2.98 -0.01]] | |||
| [[-0.34 1.57]]]]] | |||
| >>> print(mask) | |||
| [[[[[False False]] | |||
| [[False False]]]] | |||
| [[[[True True]] | |||
| [[True True]]]]] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, keep_prob=0.5, inplace=False): | |||
| self.inplace = validator.check_value_type("inplace", inplace, [bool], self.name) | |||
| def __init__(self, keep_prob=0.5): | |||
| self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) | |||
| self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name) | |||
| def infer_shape(self, x_shape): | |||
| validator.check_int(len(x_shape), 5, Rel.GE, "dim of input", self.name) | |||
| return x_shape | |||
| validator.check_int(len(x_shape), 5, Rel.EQ, "dim of input", self.name) | |||
| return x_shape, x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| valid_dtypes = mstype.number_type + (mstype.bool_,) | |||
| valid_dtypes = mstype.int_type + (mstype.float16, mstype.float32) | |||
| validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name) | |||
| return x_dtype | |||
| mask_dtype = mstype.tensor_type(mstype.bool_) | |||
| return x_dtype, mask_dtype | |||
| class CTCLoss(PrimitiveWithInfer): | |||
| @@ -0,0 +1,69 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.composite import GradOperation | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| dtype = np.float16 | |||
| x0 = Tensor(np.random.randn(3, 4, 3, 3).astype(dtype)) | |||
| x1 = Tensor(np.random.randn(3, 4, 3, 3).astype(dtype)) | |||
| class Net(nn.Cell): | |||
| def __init__(self, keep_prob): | |||
| super(Net, self).__init__() | |||
| self.drop = P.Dropout2D(keep_prob=keep_prob) | |||
| def construct(self, x): | |||
| return self.drop(x) | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||
| self.network = network | |||
| self.network.set_train() | |||
| def construct(self, x, y): | |||
| return self.grad(self.network)(x, y) | |||
| def test_net_float32(): | |||
| net = Net(0.7) | |||
| output, mask = net(x0) | |||
| print(x0) | |||
| print(output) | |||
| y = (output.asnumpy() == (x0.asnumpy()/0.7).astype(dtype)).reshape(3*4, 3*3) | |||
| output_reshape = output.asnumpy().reshape(3*4, 3*3) | |||
| for i in range(3*4): | |||
| if not y[i].all(): | |||
| assert output_reshape[i].sum() == 0 | |||
| return output, mask | |||
| def test_net_grad(): | |||
| net = Grad(Net(0.7)) | |||
| y = test_net_float32() | |||
| output = net(x1, y) | |||
| print("input: ", x1) | |||
| print("forward output: ", y) | |||
| print("backward output: ", output) | |||
| @@ -13,52 +13,57 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.composite import GradOperation | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| dtype = np.float16 | |||
| x0 = Tensor(np.random.randn(3, 4, 3, 3, 3).astype(dtype)) | |||
| x1 = Tensor(np.random.randn(3, 4, 3, 3, 3).astype(dtype)) | |||
| class Net(nn.Cell): | |||
| def __init__(self, keep_prob, inplace): | |||
| def __init__(self, keep_prob): | |||
| super(Net, self).__init__() | |||
| self.drop = P.Dropout3d(keep_prob=keep_prob, inplace=inplace) | |||
| self.drop = P.Dropout3D(keep_prob=keep_prob) | |||
| def construct(self, x): | |||
| return self.drop(x) | |||
| class NetInplace(nn.Cell): | |||
| def __init__(self, keep_prob, inplace, x): | |||
| super(NetInplace, self).__init__() | |||
| self.drop = P.Dropout3d(keep_prob=keep_prob, inplace=inplace) | |||
| self.x = x | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||
| self.network = network | |||
| self.network.set_train() | |||
| def construct(self): | |||
| return self.drop(self.x) | |||
| def construct(self, x, y): | |||
| return self.grad(self.network)(x, y) | |||
| def test_net_float32(): | |||
| x = Tensor(np.random.randn(3, 4, 3, 3, 3), mindspore.float32) | |||
| net = Net(0.7, False) | |||
| output = net(x) | |||
| print(x) | |||
| net = Net(0.7) | |||
| output, mask = net(x0) | |||
| print(x0) | |||
| print(output) | |||
| y = (output.asnumpy() == x.asnumpy()/0.7).reshape(3*4, 3*3*3) | |||
| y = (output.asnumpy() == (x0.asnumpy()/0.7).astype(dtype)).reshape(3*4, 3*3*3) | |||
| output_reshape = output.asnumpy().reshape(3*4, 3*3*3) | |||
| for i in range(3*4): | |||
| if not y[i].all(): | |||
| assert y[i].sum() == 0 | |||
| assert output_reshape[i].sum() == 0 | |||
| return output, mask | |||
| def test_net_float32_inplace(): | |||
| x = mindspore.Parameter(Tensor(np.random.randn(3, 4, 3, 3, 3), mindspore.float32)) | |||
| net = NetInplace(0.7, True, x) | |||
| output = net() | |||
| print(Tensor(x)) | |||
| print(output) | |||
| assert np.array_equal(x.asnumpy(), output.asnumpy()) | |||
| def test_net_grad(): | |||
| net = Grad(Net(0.7)) | |||
| y = test_net_float32() | |||
| output = net(x1, y) | |||
| print("input: ", x1) | |||
| print("forward output: ", y) | |||
| print("backward output: ", output) | |||