|
|
|
@@ -0,0 +1,121 @@ |
|
|
|
/** |
|
|
|
* Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
* |
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
* you may not use this file except in compliance with the License. |
|
|
|
* You may obtain a copy of the License at |
|
|
|
* |
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
* |
|
|
|
* Unless required by applicable law or agreed to in writing, software |
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
* See the License for the specific language governing permissions and |
|
|
|
* limitations under the License. |
|
|
|
*/ |
|
|
|
|
|
|
|
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_ |
|
|
|
#define MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_ |
|
|
|
|
|
|
|
#include <curand_kernel.h> |
|
|
|
#include <cuda_runtime_api.h> |
|
|
|
#include <vector> |
|
|
|
#include <string> |
|
|
|
#include <map> |
|
|
|
#include "kernel/gpu/gpu_kernel.h" |
|
|
|
#include "kernel/gpu/gpu_kernel_factory.h" |
|
|
|
#include "kernel/gpu/cuda_impl/random_op_impl.cuh" |
|
|
|
|
|
|
|
namespace mindspore { |
|
|
|
namespace kernel { |
|
|
|
enum RandomOptype { RANDOM_OP_NORMAL = 0, RANDOM_OP_INVALID_TYPE = 255 }; |
|
|
|
|
|
|
|
const std::map<std::string, RandomOptype> kRandomOpTypeMap = {{"StandardNormal", RANDOM_OP_NORMAL}}; |
|
|
|
template <typename T> |
|
|
|
class RandomOpGpuKernel : public GpuKernel { |
|
|
|
public: |
|
|
|
RandomOpGpuKernel() |
|
|
|
: random_op_type_(RANDOM_OP_INVALID_TYPE), |
|
|
|
input_size_0_(0), |
|
|
|
output_size_(sizeof(T)), |
|
|
|
workspace_size_(sizeof(curandState)) {} |
|
|
|
~RandomOpGpuKernel() override = default; |
|
|
|
|
|
|
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } |
|
|
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } |
|
|
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } |
|
|
|
|
|
|
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, |
|
|
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override { |
|
|
|
void *workspace_addr = GetDeviceAddress<void *>(workspace, 0); |
|
|
|
curandState *devStates = reinterpret_cast<curandState *>(workspace_addr); |
|
|
|
T *output_addr = GetDeviceAddress<T>(outputs, 0); |
|
|
|
|
|
|
|
switch (random_op_type_) { |
|
|
|
case RANDOM_OP_NORMAL: { |
|
|
|
StandardNormal(seed_, seed2_, devStates, output_addr, outputs[0]->size / sizeof(T), |
|
|
|
reinterpret_cast<cudaStream_t>(stream_ptr)); |
|
|
|
break; |
|
|
|
} |
|
|
|
default: { |
|
|
|
MS_LOG(EXCEPTION) << "Random operation " << random_op_type_ << " is not supported."; |
|
|
|
} |
|
|
|
} |
|
|
|
return true; |
|
|
|
} |
|
|
|
bool Init(const CNodePtr &kernel_node) override { |
|
|
|
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node); |
|
|
|
auto iter = kRandomOpTypeMap.find(kernel_name); |
|
|
|
if (iter == kRandomOpTypeMap.end()) { |
|
|
|
MS_LOG(EXCEPTION) << "Random operation " << kernel_name << " is not supported."; |
|
|
|
} else { |
|
|
|
random_op_type_ = iter->second; |
|
|
|
} |
|
|
|
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); |
|
|
|
if (input_num != 1) { |
|
|
|
MS_LOG(ERROR) << "Input number is " << input_num << ", but random op needs 1 input."; |
|
|
|
return false; |
|
|
|
} |
|
|
|
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); |
|
|
|
if (output_num != 1) { |
|
|
|
MS_LOG(ERROR) << "Output number is " << output_num << ", but random op needs 1 output."; |
|
|
|
return false; |
|
|
|
} |
|
|
|
auto input_shape_0 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); |
|
|
|
for (size_t i = 0; i < input_shape_0.size(); i++) { |
|
|
|
input_size_0_ += input_shape_0[i]; |
|
|
|
} |
|
|
|
input_size_0_ *= sizeof(int); |
|
|
|
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); |
|
|
|
for (size_t i = 0; i < output_shape.size(); i++) { |
|
|
|
output_size_ *= output_shape[i]; |
|
|
|
workspace_size_ *= output_shape[i]; |
|
|
|
} |
|
|
|
seed_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed")); |
|
|
|
seed2_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed2")); |
|
|
|
InitSizeLists(); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
protected: |
|
|
|
void InitSizeLists() override { |
|
|
|
input_size_list_.push_back(input_size_0_); |
|
|
|
output_size_list_.push_back(output_size_); |
|
|
|
workspace_size_list_.push_back(workspace_size_); |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
RandomOptype random_op_type_; |
|
|
|
size_t input_size_0_; |
|
|
|
size_t output_size_; |
|
|
|
size_t workspace_size_; |
|
|
|
int seed_; |
|
|
|
int seed2_; |
|
|
|
std::vector<size_t> input_size_list_; |
|
|
|
std::vector<size_t> output_size_list_; |
|
|
|
std::vector<size_t> workspace_size_list_; |
|
|
|
}; |
|
|
|
} // namespace kernel |
|
|
|
} // namespace mindspore |
|
|
|
|
|
|
|
#endif // MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_ |