|
|
|
@@ -0,0 +1,218 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""MobileNetV2 Quant model define""" |
|
|
|
|
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
__all__ = ['mobilenetV2_quant'] |
|
|
|
|
|
|
|
_quant_delay = 200 |
|
|
|
_ema_decay = 0.999 |
|
|
|
_symmetric = False |
|
|
|
_per_channel = False |
|
|
|
|
|
|
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
|
|
if min_value is None: |
|
|
|
min_value = divisor |
|
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
# Make sure that round down does not go down by more than 10%. |
|
|
|
if new_v < 0.9 * v: |
|
|
|
new_v += divisor |
|
|
|
return new_v |
|
|
|
|
|
|
|
|
|
|
|
class GlobalAvgPooling(nn.Cell): |
|
|
|
""" |
|
|
|
Global avg pooling definition. |
|
|
|
|
|
|
|
Args: |
|
|
|
|
|
|
|
Returns: |
|
|
|
Tensor, output tensor. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> GlobalAvgPooling() |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self): |
|
|
|
super(GlobalAvgPooling, self).__init__() |
|
|
|
self.mean = P.ReduceMean(keep_dims=False) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.mean(x, (2, 3)) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class ConvBNReLU(nn.Cell): |
|
|
|
""" |
|
|
|
Convolution/Depthwise fused with Batchnorm and ReLU block definition. |
|
|
|
|
|
|
|
Args: |
|
|
|
in_planes (int): Input channel. |
|
|
|
out_planes (int): Output channel. |
|
|
|
kernel_size (int): Input kernel size. |
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1. |
|
|
|
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1. |
|
|
|
|
|
|
|
Returns: |
|
|
|
Tensor, output tensor. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): |
|
|
|
super(ConvBNReLU, self).__init__() |
|
|
|
padding = (kernel_size - 1) // 2 |
|
|
|
conv = nn.Conv2dBnFoldQuant(in_planes, out_planes, kernel_size, stride, |
|
|
|
pad_mode='pad', padding=padding, quant_delay=_quant_delay, group=groups, |
|
|
|
per_channel=_per_channel, symmetric=_symmetric) |
|
|
|
layers = [conv, nn.ReLU()] |
|
|
|
self.features = nn.SequentialCell(layers) |
|
|
|
self.fake = nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay, min_init=0, quant_delay=_quant_delay) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
output = self.features(x) |
|
|
|
output = self.fake(output) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
class InvertedResidual(nn.Cell): |
|
|
|
""" |
|
|
|
Mobilenetv2 residual block definition. |
|
|
|
|
|
|
|
Args: |
|
|
|
inp (int): Input channel. |
|
|
|
oup (int): Output channel. |
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1. |
|
|
|
expand_ratio (int): expand ration of input channel |
|
|
|
|
|
|
|
Returns: |
|
|
|
Tensor, output tensor. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> ResidualBlock(3, 256, 1, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, inp, oup, stride, expand_ratio): |
|
|
|
super(InvertedResidual, self).__init__() |
|
|
|
assert stride in [1, 2] |
|
|
|
|
|
|
|
hidden_dim = int(round(inp * expand_ratio)) |
|
|
|
self.use_res_connect = stride == 1 and inp == oup |
|
|
|
|
|
|
|
layers = [] |
|
|
|
if expand_ratio != 1: |
|
|
|
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) |
|
|
|
layers.extend([ |
|
|
|
# dw |
|
|
|
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), |
|
|
|
# pw-linear |
|
|
|
nn.Conv2dBnFoldQuant(hidden_dim, oup, kernel_size=1, stride=1, pad_mode='pad', padding=0, group=1, |
|
|
|
per_channel=_per_channel, symmetric=_symmetric, quant_delay=_quant_delay), |
|
|
|
nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay, quant_delay=_quant_delay) |
|
|
|
]) |
|
|
|
self.conv = nn.SequentialCell(layers) |
|
|
|
self.add = P.TensorAdd() |
|
|
|
self.add_fake = nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay, quant_delay=_quant_delay) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
identity = x |
|
|
|
x = self.conv(x) |
|
|
|
if self.use_res_connect: |
|
|
|
x = self.add(identity, x) |
|
|
|
x = self.add_fake(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV2Quant(nn.Cell): |
|
|
|
""" |
|
|
|
MobileNetV2Quant architecture. |
|
|
|
|
|
|
|
Args: |
|
|
|
class_num (Cell): number of classes. |
|
|
|
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1. |
|
|
|
has_dropout (bool): Is dropout used. Default is false |
|
|
|
inverted_residual_setting (list): Inverted residual settings. Default is None |
|
|
|
round_nearest (list): Channel round to . Default is 8 |
|
|
|
Returns: |
|
|
|
Tensor, output tensor. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> MobileNetV2Quant(num_classes=1000) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, num_classes=1000, width_mult=1., |
|
|
|
has_dropout=False, inverted_residual_setting=None, round_nearest=8): |
|
|
|
super(MobileNetV2Quant, self).__init__() |
|
|
|
block = InvertedResidual |
|
|
|
input_channel = 32 |
|
|
|
last_channel = 1280 |
|
|
|
# setting of inverted residual blocks |
|
|
|
self.cfgs = inverted_residual_setting |
|
|
|
if inverted_residual_setting is None: |
|
|
|
self.cfgs = [ |
|
|
|
# t, c, n, s |
|
|
|
[1, 16, 1, 1], |
|
|
|
[6, 24, 2, 2], |
|
|
|
[6, 32, 3, 2], |
|
|
|
[6, 64, 4, 2], |
|
|
|
[6, 96, 3, 1], |
|
|
|
[6, 160, 3, 2], |
|
|
|
[6, 320, 1, 1], |
|
|
|
] |
|
|
|
|
|
|
|
# building first layer |
|
|
|
input_channel = _make_divisible(input_channel * width_mult, round_nearest) |
|
|
|
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) |
|
|
|
self.input_fake = nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay, quant_delay=_quant_delay) |
|
|
|
features = [ConvBNReLU(3, input_channel, stride=2)] |
|
|
|
# building inverted residual blocks |
|
|
|
for t, c, n, s in self.cfgs: |
|
|
|
output_channel = _make_divisible(c * width_mult, round_nearest) |
|
|
|
for i in range(n): |
|
|
|
stride = s if i == 0 else 1 |
|
|
|
features.append(block(input_channel, output_channel, stride, expand_ratio=t)) |
|
|
|
input_channel = output_channel |
|
|
|
# building last several layers |
|
|
|
features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1)) |
|
|
|
# make it nn.CellList |
|
|
|
self.features = nn.SequentialCell(features) |
|
|
|
# mobilenet head |
|
|
|
head = ([GlobalAvgPooling(), |
|
|
|
nn.DenseQuant(self.out_channels, num_classes, has_bias=True, per_channel=_per_channel, |
|
|
|
symmetric=_symmetric, quant_delay=_quant_delay), |
|
|
|
nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay)] if not has_dropout else |
|
|
|
[GlobalAvgPooling(), |
|
|
|
nn.Dropout(0.2), |
|
|
|
nn.DenseQuant(self.out_channels, num_classes, has_bias=True, per_channel=_per_channel, |
|
|
|
symmetric=_symmetric, quant_delay=_quant_delay), |
|
|
|
nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay, quant_delay=_quant_delay)]) |
|
|
|
self.head = nn.SequentialCell(head) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.input_fake(x) |
|
|
|
x = self.features(x) |
|
|
|
x = self.head(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
def mobilenetV2_quant(**kwargs): |
|
|
|
""" |
|
|
|
Constructs a MobileNet V2 model |
|
|
|
""" |
|
|
|
return MobileNetV2Quant(**kwargs) |