| @@ -1301,17 +1301,6 @@ class Dataset: | |||||
| return self.children[0].get_repeat_count() | return self.children[0].get_repeat_count() | ||||
| return 1 | return 1 | ||||
| def get_class_indexing(self): | |||||
| """ | |||||
| Get the class index. | |||||
| Return: | |||||
| Dict, A str-to-int mapping from label name to index. | |||||
| """ | |||||
| if self.children: | |||||
| return self.children[0].get_class_indexing() | |||||
| raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self))) | |||||
| def reset(self): | def reset(self): | ||||
| """Reset the dataset for next epoch.""" | """Reset the dataset for next epoch.""" | ||||
| @@ -1448,7 +1437,7 @@ class MappableDataset(SourceDataset): | |||||
| sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is | sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is | ||||
| provided, the dataset will be split into n datasets of size s1, size s2, …, size sn | provided, the dataset will be split into n datasets of size s1, size s2, …, size sn | ||||
| respectively. If the sum of all sizes does not equal the original dataset size, an | respectively. If the sum of all sizes does not equal the original dataset size, an | ||||
| an error will occur. | |||||
| error will occur. | |||||
| If a list of floats [f1, f2, …, fn] is provided, all floats must be between 0 and 1 | If a list of floats [f1, f2, …, fn] is provided, all floats must be between 0 and 1 | ||||
| and must sum to 1, otherwise an error will occur. The dataset will be split into n | and must sum to 1, otherwise an error will occur. The dataset will be split into n | ||||
| Datasets of size round(f1*K), round(f2*K), …, round(fn*K) where K is the size of the | Datasets of size round(f1*K), round(f2*K), …, round(fn*K) where K is the size of the | ||||
| @@ -1543,7 +1532,16 @@ class DatasetOp(Dataset): | |||||
| """ | """ | ||||
| # No need for __init__ since it is the same as the super's init | # No need for __init__ since it is the same as the super's init | ||||
| def get_class_indexing(self): | |||||
| """ | |||||
| Get the class index. | |||||
| Return: | |||||
| Dict, A str-to-int mapping from label name to index. | |||||
| """ | |||||
| if self.children: | |||||
| return self.children[0].get_class_indexing() | |||||
| raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self))) | |||||
| class BucketBatchByLengthDataset(DatasetOp): | class BucketBatchByLengthDataset(DatasetOp): | ||||
| """ | """ | ||||
| @@ -2506,7 +2504,7 @@ class ImageFolderDatasetV2(MappableDataset): | |||||
| The generated dataset has two columns ['image', 'label']. | The generated dataset has two columns ['image', 'label']. | ||||
| The shape of the image column is [image_size] if decode flag is False, or [H,W,C] | The shape of the image column is [image_size] if decode flag is False, or [H,W,C] | ||||
| otherwise. | otherwise. | ||||
| The type of the image tensor is uint8. The label is just a scalar uint64 | |||||
| The type of the image tensor is uint8. The label is just a scalar int32 | |||||
| tensor. | tensor. | ||||
| This dataset can take in a sampler. sampler and shuffle are mutually exclusive. Table | This dataset can take in a sampler. sampler and shuffle are mutually exclusive. Table | ||||
| below shows what input args are allowed and their expected behavior. | below shows what input args are allowed and their expected behavior. | ||||
| @@ -2578,7 +2576,7 @@ class ImageFolderDatasetV2(MappableDataset): | |||||
| >>> # 2) read all samples (image files) from folder cat and folder dog with label 0 and 1 | >>> # 2) read all samples (image files) from folder cat and folder dog with label 0 and 1 | ||||
| >>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir,class_indexing={"cat":0,"dog":1}) | >>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir,class_indexing={"cat":0,"dog":1}) | ||||
| >>> # 3) read all samples (image files) in dataset_dir with extensions .JPEG and .png (case sensitive) | >>> # 3) read all samples (image files) in dataset_dir with extensions .JPEG and .png (case sensitive) | ||||
| >>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions={".JPEG",".png"}) | |||||
| >>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions=[".JPEG",".png"]) | |||||
| """ | """ | ||||
| @check_imagefolderdatasetv2 | @check_imagefolderdatasetv2 | ||||