|
|
|
@@ -18,7 +18,8 @@ import pytest |
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.nn import BatchNorm2d |
|
|
|
from mindspore.common.parameter import ParameterTuple |
|
|
|
from mindspore.nn import BatchNorm2d, BatchNorm1d, SGD |
|
|
|
from mindspore.nn import Cell |
|
|
|
from mindspore.ops import composite as C |
|
|
|
|
|
|
|
@@ -201,3 +202,139 @@ def test_infer_backward(): |
|
|
|
ms_grad = Grad(ms_net) |
|
|
|
ms_out_grad_np = ms_grad(ms_input, Tensor(input_grad_np)) |
|
|
|
assert np.allclose(ms_out_grad_np[0].asnumpy(), expect_output) |
|
|
|
|
|
|
|
|
|
|
|
class BatchNorm1d_Net(Cell): |
|
|
|
def __init__(self, affine=True, gamma_init='ones', beta_init='zeros', moving_mean_init='zeros', |
|
|
|
moving_var_init='ones', use_batch_statistics=None): |
|
|
|
super(BatchNorm1d_Net, self).__init__() |
|
|
|
self.bn1 = BatchNorm1d(2, eps=0.00001, momentum=0.1, affine=affine, gamma_init=gamma_init, beta_init=beta_init, |
|
|
|
moving_mean_init=moving_mean_init, moving_var_init=moving_var_init, |
|
|
|
use_batch_statistics=use_batch_statistics) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.bn1(x) |
|
|
|
return x |
|
|
|
|
|
|
|
class GradByListNet(Cell): |
|
|
|
def __init__(self, network): |
|
|
|
super(GradByListNet, self).__init__() |
|
|
|
self.grad = C.GradOperation(get_all=True, sens_param=True, get_by_list=True) |
|
|
|
self.network = network |
|
|
|
self.params = ParameterTuple(network.trainable_params()) |
|
|
|
|
|
|
|
def construct(self, x, dy): |
|
|
|
grad_op = self.grad(self.network, self.params) |
|
|
|
output = grad_op(x, dy) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_1d_train(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
bn_net = BatchNorm1d_Net(use_batch_statistics=None) |
|
|
|
grad_net = GradByListNet(bn_net) |
|
|
|
optimizer = SGD(bn_net.trainable_params(), learning_rate=0.01, momentum=0.9) |
|
|
|
bn_net.set_train(True) |
|
|
|
|
|
|
|
x1 = np.array([[1.6243454, -0.6117564], |
|
|
|
[-0.5281718, -1.0729686], |
|
|
|
[0.86540765, -2.3015387], |
|
|
|
[1.7448118, -0.7612069], |
|
|
|
[0.3190391, -0.24937038]]).astype(np.float32) |
|
|
|
dy1 = np.array([[1.4621079, -2.0601406], |
|
|
|
[-0.3224172, -0.38405436], |
|
|
|
[1.1337694, -1.0998913], |
|
|
|
[-0.1724282, -0.8778584], |
|
|
|
[0.04221375, 0.58281523]]).astype(np.float32) |
|
|
|
x2 = np.array([[-0.19183555, -0.887629], |
|
|
|
[-0.7471583, 1.6924546], |
|
|
|
[0.05080776, -0.6369957], |
|
|
|
[0.19091548, 2.1002553], |
|
|
|
[0.12015896, 0.6172031]]).astype(np.float32) |
|
|
|
dy2 = np.array([[0.30017033, -0.35224986], |
|
|
|
[-1.1425182, -0.34934273], |
|
|
|
[-0.20889424, 0.5866232], |
|
|
|
[0.8389834, 0.9311021], |
|
|
|
[0.2855873, 0.8851412]]).astype(np.float32) |
|
|
|
x_train = [x1, x2] |
|
|
|
dy_train = [dy1, dy2] |
|
|
|
|
|
|
|
dx1 = np.array([[0.8120, -2.0371], |
|
|
|
[-0.2202, 0.5837], |
|
|
|
[0.8040, 0.1950], |
|
|
|
[-1.1823, -0.2786], |
|
|
|
[-0.2135, 1.5371]]).astype(np.float32) |
|
|
|
gamma1 = np.array([0.9821, 0.9873]).astype(np.float32) |
|
|
|
beta1 = np.array([-0.0214, 0.0384]).astype(np.float32) |
|
|
|
mean1 = np.array([0.7246, -0.8994]).astype(np.float32) |
|
|
|
variance1 = np.array([0.9036, 0.6559]).astype(np.float32) |
|
|
|
|
|
|
|
dx2 = np.array([[1.1955, -0.4247], |
|
|
|
[-0.2425, -0.6789], |
|
|
|
[-1.4563, 0.3237], |
|
|
|
[0.8752, 0.3351], |
|
|
|
[-0.3719, 0.4448]]).astype(np.float32) |
|
|
|
gamma2 = np.array([0.9370, 0.9687]).astype(np.float32) |
|
|
|
beta2 = np.array([-0.0415, 0.0559]).astype(np.float32) |
|
|
|
mean2 = np.array([-0.0314, 0.4294]).astype(np.float32) |
|
|
|
variance2 = np.array([0.2213, 1.6822]).astype(np.float32) |
|
|
|
|
|
|
|
exp_dx = [dx1, dx2] |
|
|
|
exp_gamma = [gamma1, gamma2] |
|
|
|
exp_beta = [beta1, beta2] |
|
|
|
exp_mean = [mean1, mean2] |
|
|
|
exp_variance = [variance1, variance2] |
|
|
|
|
|
|
|
for data in zip(x_train, dy_train, exp_dx, exp_gamma, exp_beta, exp_mean, exp_variance): |
|
|
|
output = grad_net(Tensor(data[0]), Tensor(data[1])) |
|
|
|
assert np.allclose(output[0][0].asnumpy(), data[2], atol=1.0e-4) |
|
|
|
optimizer(output[1]) |
|
|
|
assert np.allclose(bn_net.bn1.gamma.asnumpy(), data[3], atol=1.0e-4) |
|
|
|
assert np.allclose(bn_net.bn1.beta.asnumpy(), data[4], atol=1.0e-4) |
|
|
|
assert np.allclose(bn_net.bn1.moving_mean.asnumpy(), data[5], atol=1.0e-4) |
|
|
|
assert np.allclose(bn_net.bn1.moving_variance.asnumpy(), data[6], atol=1.0e-4) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_1d_eval(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
gamma_init = Tensor(np.array([0.93700373, 0.96870345]).astype(np.float32)) |
|
|
|
beta_init = Tensor(np.array([-0.04145495, 0.05593072]).astype(np.float32)) |
|
|
|
mean_init = Tensor(np.array([-0.03142229, 0.4294087]).astype(np.float32)) |
|
|
|
variance_init = Tensor(np.array([0.2212921, 1.6822311]).astype(np.float32)) |
|
|
|
bn_net = BatchNorm1d_Net(affine=False, gamma_init=gamma_init, beta_init=beta_init, moving_mean_init=mean_init, |
|
|
|
moving_var_init=variance_init, use_batch_statistics=None) |
|
|
|
bn_net.set_train(False) |
|
|
|
|
|
|
|
x1 = np.array([[-1.1006192, 1.1447237], |
|
|
|
[0.9015907, 0.50249434], |
|
|
|
[0.90085596, -0.68372786], |
|
|
|
[-0.12289023, -0.93576944], |
|
|
|
[-0.26788807, 0.53035545]]).astype(np.float32) |
|
|
|
x2 = np.array([[-0.7543979, 1.2528682], |
|
|
|
[0.5129298, -0.29809284], |
|
|
|
[0.48851815, -0.07557172], |
|
|
|
[1.1316293, 1.5198169], |
|
|
|
[2.1855755, -1.3964963]]).astype(np.float32) |
|
|
|
x_test = [x1, x2] |
|
|
|
|
|
|
|
y1 = np.array([[-2.1711, 0.5902], |
|
|
|
[1.8169, 0.1105], |
|
|
|
[1.8155, -0.7754], |
|
|
|
[-0.2236, -0.9637], |
|
|
|
[-0.5125, 0.1313]]).astype(np.float32) |
|
|
|
y2 = np.array([[-1.4815, 0.6710], |
|
|
|
[1.0428, -0.4874], |
|
|
|
[0.9942, -0.3212], |
|
|
|
[2.2751, 0.8703], |
|
|
|
[4.3744, -1.3078]]).astype(np.float32) |
|
|
|
y_test = [y1, y2] |
|
|
|
|
|
|
|
for x, y in zip(x_test, y_test): |
|
|
|
y_pred = bn_net(Tensor(x)) |
|
|
|
assert np.allclose(y_pred.asnumpy(), y, atol=1.0e-4) |