|
|
|
@@ -0,0 +1,223 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor, Parameter |
|
|
|
from mindspore.nn.wrap.cell_wrapper import WithLossCell |
|
|
|
from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.nn.optim import Momentum, RMSProp |
|
|
|
from mindspore.ops import functional as F |
|
|
|
from mindspore.common import dtype as mstype |
|
|
|
from mindspore.train import Model |
|
|
|
from mindspore.nn.optim import Lamb |
|
|
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager |
|
|
|
|
|
|
|
class MindData: |
|
|
|
""" Stub for MindData """ |
|
|
|
|
|
|
|
def __init__(self, size=None, batch_size=None, repeat_count=1, |
|
|
|
np_types=None, output_shapes=None, input_indexes=(), func_name=''): |
|
|
|
self._size = size |
|
|
|
self._batch_size = batch_size |
|
|
|
self._repeat_count = repeat_count |
|
|
|
self._np_types = np_types |
|
|
|
self._output_shapes = output_shapes |
|
|
|
self._input_indexes = input_indexes |
|
|
|
self._func_name = func_name |
|
|
|
self._iter_num = 0 |
|
|
|
|
|
|
|
def get_dataset_size(self): |
|
|
|
return self._size |
|
|
|
|
|
|
|
def get_repeat_count(self): |
|
|
|
return self._repeat_count |
|
|
|
|
|
|
|
def get_batch_size(self): |
|
|
|
return self._batch_size |
|
|
|
|
|
|
|
def output_types(self): |
|
|
|
return self._np_types |
|
|
|
|
|
|
|
def output_shapes(self): |
|
|
|
return self._output_shapes |
|
|
|
|
|
|
|
def create_tuple_iterator(self): |
|
|
|
return self |
|
|
|
|
|
|
|
@property |
|
|
|
def input_indexes(self): |
|
|
|
return self._input_indexes |
|
|
|
|
|
|
|
@property |
|
|
|
def func_name(self): |
|
|
|
return self._func_name |
|
|
|
|
|
|
|
def send(self): |
|
|
|
pass |
|
|
|
|
|
|
|
def __len__(self): |
|
|
|
return self._size |
|
|
|
|
|
|
|
def __iter__(self): |
|
|
|
return self |
|
|
|
|
|
|
|
def __next__(self): |
|
|
|
if self._size < self._iter_num: |
|
|
|
raise StopIteration |
|
|
|
self._iter_num += 1 |
|
|
|
next_value = [] |
|
|
|
for shape, typ in zip(self._output_shapes, self._np_types): |
|
|
|
next_value.append(Tensor(np.ndarray(shape, typ))) |
|
|
|
|
|
|
|
return tuple(next_value) |
|
|
|
|
|
|
|
def next(self): |
|
|
|
return self.__next__() |
|
|
|
|
|
|
|
def reset(self): |
|
|
|
self._iter_num = 0 |
|
|
|
|
|
|
|
|
|
|
|
class MindDataSet(MindData): |
|
|
|
def __init__(self, dataset_types, dataset_shapes): |
|
|
|
super(MindDataSet, self).__init__(size=2, batch_size=32, |
|
|
|
np_types=dataset_types, |
|
|
|
output_shapes=dataset_shapes, |
|
|
|
input_indexes=(0, 1), func_name='') |
|
|
|
def __next__(self): |
|
|
|
if self._size < self._iter_num: |
|
|
|
raise StopIteration |
|
|
|
self._iter_num += 1 |
|
|
|
res = [] |
|
|
|
for shape, t in zip(self._output_shapes, self._np_types): |
|
|
|
res.append(Tensor(np.ones(shape).astype(t))) |
|
|
|
return tuple(res) |
|
|
|
|
|
|
|
class NetFP16(nn.Cell): |
|
|
|
def __init__(self, in_features, out_features): |
|
|
|
super(NetFP16, self).__init__() |
|
|
|
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight") |
|
|
|
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias") |
|
|
|
self.matmul = P.MatMul() |
|
|
|
self.add = P.TensorAdd() |
|
|
|
self.cast = P.Cast() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
output = self.cast(self.add(self.matmul(self.cast(x, mstype.float16), |
|
|
|
self.cast(self.weight, mstype.float16)), |
|
|
|
self.cast(self.bias, mstype.float16)), mstype.float32) |
|
|
|
return output |
|
|
|
|
|
|
|
def get_axis(x): |
|
|
|
shape_op = P.Shape() |
|
|
|
shape = shape_op(x) |
|
|
|
length = F.tuple_len(shape) |
|
|
|
perm = F.make_range(0, length) |
|
|
|
return perm |
|
|
|
|
|
|
|
class MSELoss(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(MSELoss, self).__init__() |
|
|
|
self.sum = P.ReduceSum() |
|
|
|
self.square = P.Square() |
|
|
|
self.reduce_mean = P.ReduceMean() |
|
|
|
|
|
|
|
def construct(self, data, label): |
|
|
|
diff = data - label |
|
|
|
return self.reduce_mean(self.square(diff), get_axis(diff)) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_loss_scale_fp16_lr_overflow(): |
|
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32)) |
|
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32)) |
|
|
|
scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mstype.float32) |
|
|
|
lr = Tensor(np.ones([1], np.float32) * 0.1) |
|
|
|
net = NetFP16(16, 16) |
|
|
|
net.set_train() |
|
|
|
|
|
|
|
loss = MSELoss() |
|
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9) |
|
|
|
|
|
|
|
net_with_loss = WithLossCell(net, loss) |
|
|
|
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer) |
|
|
|
output_1 = train_network(inputs, label, scaling_sens) |
|
|
|
output_2 = train_network(inputs, label, scaling_sens) |
|
|
|
assert output_1[0].asnumpy() == output_2[0].asnumpy() |
|
|
|
assert output_1[1].asnumpy() == output_2[1].asnumpy() == True |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_loss_scale_fp16_model_train_overflow(): |
|
|
|
dataset_types = (np.float32, np.float32) |
|
|
|
dataset_shapes = ((16, 16), (16, 16)) |
|
|
|
dataset = MindDataSet(dataset_types, dataset_shapes) |
|
|
|
|
|
|
|
net = NetFP16(16, 16) |
|
|
|
net.set_train() |
|
|
|
|
|
|
|
loss = MSELoss() |
|
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) |
|
|
|
scale_manager = DynamicLossScaleManager(init_loss_scale=16, scale_factor=2, scale_window=2) |
|
|
|
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics=None, loss_scale_manager=scale_manager) |
|
|
|
model.train(2, dataset, dataset_sink_mode=False) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_loss_scale_fp16_opt_rmsprop_overflow(): |
|
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32)) |
|
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32)) |
|
|
|
scaling_sens = Tensor(np.full(1, np.finfo(np.float32).max), dtype=mstype.float32) |
|
|
|
net = NetFP16(16, 16) |
|
|
|
net.set_train() |
|
|
|
|
|
|
|
loss = MSELoss() |
|
|
|
optimizer = RMSProp(net.trainable_params(), learning_rate=0.1) |
|
|
|
net_with_loss = WithLossCell(net, loss) |
|
|
|
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer) |
|
|
|
output_1 = train_network(inputs, label, scaling_sens) |
|
|
|
output_2 = train_network(inputs, label, scaling_sens) |
|
|
|
assert output_1[0].asnumpy() == output_2[0].asnumpy() |
|
|
|
assert output_1[1].asnumpy() == output_2[1].asnumpy() == True |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_loss_scale_fp16_overflow(): |
|
|
|
inputs = Tensor(np.ones([16, 16]).astype(np.float32)) |
|
|
|
label = Tensor(np.zeros([16, 16]).astype(np.float32)) |
|
|
|
scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mstype.float32) |
|
|
|
net = NetFP16(16, 16) |
|
|
|
net.set_train() |
|
|
|
|
|
|
|
loss = MSELoss() |
|
|
|
optimizer = Lamb(net.trainable_params(), learning_rate=0.01) |
|
|
|
net_with_loss = WithLossCell(net, loss) |
|
|
|
net_with_loss.set_grad() |
|
|
|
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer) |
|
|
|
output_1 = train_network(inputs, label, scaling_sens) |
|
|
|
output_2 = train_network(inputs, label, scaling_sens) |
|
|
|
assert output_1[0].asnumpy() == output_2[0].asnumpy() |
|
|
|
assert output_1[1].asnumpy() == output_2[1].asnumpy() == True |