| @@ -357,15 +357,11 @@ checkopts() | |||
| if [[ "X$DEVICE_VERSION" == "X" ]]; then | |||
| DEVICE_VERSION=10.1 | |||
| fi | |||
| if [[ "X$DEVICE_VERSION" != "X9.2" && "X$DEVICE_VERSION" != "X10.1" ]]; then | |||
| if [[ "X$DEVICE_VERSION" != "X11.1" && "X$DEVICE_VERSION" != "X10.1" ]]; then | |||
| echo "Invalid value ${DEVICE_VERSION} for option -V" | |||
| usage | |||
| exit 1 | |||
| fi | |||
| if [[ "X$DEVICE_VERSION" == "X9.2" ]]; then | |||
| echo "Unsupported CUDA version 9.2" | |||
| exit 1 | |||
| fi | |||
| CUDA_VERSION="$DEVICE_VERSION" | |||
| elif [[ "X$DEVICE" == "Xd" || "X$DEVICE" == "Xascend" ]]; then | |||
| # version default 910 | |||
| @@ -45,7 +45,7 @@ class GPUEnvChecker(EnvChecker): | |||
| """GPU environment check.""" | |||
| def __init__(self): | |||
| self.version = ["10.1"] | |||
| self.version = ["10.1", "11.1"] | |||
| self.lib_key_to_lib_name = {'libcu': 'libcuda.so'} | |||
| # env | |||
| self.path = os.getenv("PATH") | |||
| @@ -127,7 +127,11 @@ if(ENABLE_GPU) | |||
| endif() | |||
| set(NVCC_TMP_CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) | |||
| string(REPLACE "-std=c++17" "-std=c++11" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") | |||
| if(${CUDA_VERSION} VERSION_LESS 11.0) | |||
| string(REPLACE "-std=c++17" "-std=c++11" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") | |||
| else() | |||
| string(REPLACE "-std=c++17" "-std=c++14" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") | |||
| endif() | |||
| set_property(SOURCE ${GPU_SRC_LIST} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_DEVICE) | |||
| cuda_add_library(gpu_cuda_lib STATIC ${GPU_SRC_LIST}) | |||
| set(CMAKE_CXX_FLAGS ${NVCC_TMP_CMAKE_CXX_FLAGS}) | |||
| @@ -310,23 +310,15 @@ class Conv2dGpuFwdKernel : public GpuKernel { | |||
| "cudnnSetTensor4dDescriptor failed"); | |||
| } | |||
| void SelectAlgorithm(cudnnTensorDescriptor_t input_descriptor_real) { | |||
| if (group_ > 1 || CUDNN_MAJOR < 7) { | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnGetConvolutionForwardAlgorithm( | |||
| cudnn_handle_, input_descriptor_real, filter_desc_, conv_desc_, output_desc_, | |||
| CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, 0, &conv_algorithm_), | |||
| "cudnnGetConvolutionForwardAlgorithm failed"); | |||
| } else { | |||
| constexpr int requested_algo_count = 1; | |||
| int returned_algo_count; | |||
| cudnnConvolutionFwdAlgoPerf_t perf_results; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionForwardAlgorithm_v7(cudnn_handle_, input_descriptor_real, filter_desc_, conv_desc_, | |||
| output_desc_, requested_algo_count, &returned_algo_count, &perf_results), | |||
| "cudnnGetConvolutionForwardAlgorithm_v7 failed"); | |||
| conv_algorithm_ = perf_results.algo; | |||
| } | |||
| constexpr int requested_algo_count = 1; | |||
| int returned_algo_count = 0; | |||
| cudnnConvolutionFwdAlgoPerf_t perf_results; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionForwardAlgorithm_v7(cudnn_handle_, input_descriptor_real, filter_desc_, conv_desc_, | |||
| output_desc_, requested_algo_count, &returned_algo_count, &perf_results), | |||
| "cudnnGetConvolutionForwardAlgorithm_v7 failed"); | |||
| conv_algorithm_ = perf_results.algo; | |||
| if (cudnn_data_type_ == CUDNN_DATA_HALF) { | |||
| conv_algorithm_ = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; | |||
| } | |||
| @@ -280,23 +280,15 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel { | |||
| return true; | |||
| } | |||
| void SelectAlgorithm(cudnnTensorDescriptor_t x_desc_real) { | |||
| if (group_ > 1 || CUDNN_MAJOR < 7) { | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle_, x_desc_real, dy_desc_, conv_desc_, dw_desc_, | |||
| CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, 0, &algo_), | |||
| "GetConvolutionBackwardFilterAlgorithm failed"); | |||
| } else { | |||
| constexpr int requested_algo_count = 1; | |||
| int returned_algo_count; | |||
| cudnnConvolutionBwdFilterAlgoPerf_t perf_results; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionBackwardFilterAlgorithm_v7(cudnn_handle_, x_desc_real, dy_desc_, conv_desc_, dw_desc_, | |||
| requested_algo_count, &returned_algo_count, &perf_results), | |||
| "GetConvolutionBackwardFilterAlgorithm failed"); | |||
| algo_ = perf_results.algo; | |||
| } | |||
| constexpr int requested_algo_count = 1; | |||
| int returned_algo_count = 0; | |||
| cudnnConvolutionBwdFilterAlgoPerf_t perf_results; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionBackwardFilterAlgorithm_v7(cudnn_handle_, x_desc_real, dy_desc_, conv_desc_, dw_desc_, | |||
| requested_algo_count, &returned_algo_count, &perf_results), | |||
| "GetConvolutionBackwardFilterAlgorithm failed"); | |||
| algo_ = perf_results.algo; | |||
| if (cudnn_data_type_ == CUDNN_DATA_HALF) { | |||
| algo_ = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; | |||
| } | |||
| @@ -289,23 +289,15 @@ class ConvGradInputGpuBkwKernel : public GpuKernel { | |||
| [](const int64_t &value) { return static_cast<int>(value); }); | |||
| } | |||
| void SelectAlgorithm(cudnnTensorDescriptor_t dx_desc_real) { | |||
| if (group_ > 1 || CUDNN_MAJOR < 7) { | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle_, w_desc_, dy_desc_, conv_desc_, dx_desc_real, | |||
| CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, 0, &algo_), | |||
| "cudnnGetConvolutionBackwardDataAlgorithm failed"); | |||
| } else { | |||
| constexpr int requested_algo_count = 1; | |||
| int returned_algo_count; | |||
| cudnnConvolutionBwdDataAlgoPerf_t perf_results; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionBackwardDataAlgorithm_v7(cudnn_handle_, w_desc_, dy_desc_, conv_desc_, dx_desc_real, | |||
| requested_algo_count, &returned_algo_count, &perf_results), | |||
| "cudnnGetConvolutionBackwardDataAlgorithm_v7 failed"); | |||
| algo_ = perf_results.algo; | |||
| } | |||
| constexpr int requested_algo_count = 1; | |||
| int returned_algo_count = 0; | |||
| cudnnConvolutionBwdDataAlgoPerf_t perf_results; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT( | |||
| kernel_node_, | |||
| cudnnGetConvolutionBackwardDataAlgorithm_v7(cudnn_handle_, w_desc_, dy_desc_, conv_desc_, dx_desc_real, | |||
| requested_algo_count, &returned_algo_count, &perf_results), | |||
| "cudnnGetConvolutionBackwardDataAlgorithm_v7 failed"); | |||
| algo_ = perf_results.algo; | |||
| if (cudnn_data_type_ == CUDNN_DATA_HALF) { | |||
| algo_ = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; | |||
| } | |||
| @@ -125,12 +125,21 @@ class LstmGpuKernel : public GpuKernel { | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetDropoutDescriptor(dropout_desc_, handle_, dropout_, nullptr, 0, 0), | |||
| "set dropout_desc failed"); | |||
| cudnnRNNBiasMode_t bias_mode = has_bias_ ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS; | |||
| #if CUDNN_VERSION < 8000 | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetRNNDescriptor(handle_, rnn_desc_, hidden_size_, num_layers_, dropout_desc_, | |||
| input_mode, direction, rnn_mode, algo, cudnn_data_type_), | |||
| cudnnSetRNNDescriptor_v6(handle_, rnn_desc_, hidden_size_, num_layers_, dropout_desc_, | |||
| input_mode, direction, rnn_mode, algo, cudnn_data_type_), | |||
| "set rnn_desc failed"); | |||
| cudnnRNNBiasMode_t bias_mode = has_bias_ ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetRNNBiasMode(rnn_desc_, bias_mode), "set bias_mode failed"); | |||
| #else | |||
| cudnnMathType_t math_type = (cudnn_data_type_ == CUDNN_DATA_HALF) ? CUDNN_TENSOR_OP_MATH : CUDNN_FMA_MATH; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetRNNDescriptor_v8(rnn_desc_, algo, rnn_mode, bias_mode, direction, input_mode, | |||
| cudnn_data_type_, cudnn_data_type_, math_type, input_size_, | |||
| hidden_size_, hidden_size_, num_layers_, dropout_desc_, 0), | |||
| "set rnn_desc failed"); | |||
| #endif | |||
| auto weight_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3); | |||
| size_t weight_size = weight_shape[0] * weight_shape[1] * weight_shape[2] * sizeof(T); | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| @@ -140,12 +140,21 @@ class LstmGradDataGpuKernel : public GpuKernel { | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetDropoutDescriptor(dropout_desc_, handle_, dropout_, nullptr, 0, 0), | |||
| "set dropout_desc failed"); | |||
| cudnnRNNBiasMode_t bias_mode = has_bias_ ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS; | |||
| #if CUDNN_VERSION < 8000 | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetRNNDescriptor(handle_, rnn_desc_, hidden_size_, num_layers_, dropout_desc_, | |||
| input_mode, direction, rnn_mode, algo, cudnn_data_type_), | |||
| cudnnSetRNNDescriptor_v6(handle_, rnn_desc_, hidden_size_, num_layers_, dropout_desc_, | |||
| input_mode, direction, rnn_mode, algo, cudnn_data_type_), | |||
| "set rnn_desc failed"); | |||
| cudnnRNNBiasMode_t bias_mode = has_bias_ ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetRNNBiasMode(rnn_desc_, bias_mode), "set bias_mode failed"); | |||
| #else | |||
| cudnnMathType_t math_type = (cudnn_data_type_ == CUDNN_DATA_HALF) ? CUDNN_TENSOR_OP_MATH : CUDNN_FMA_MATH; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetRNNDescriptor_v8(rnn_desc_, algo, rnn_mode, bias_mode, direction, input_mode, | |||
| cudnn_data_type_, cudnn_data_type_, math_type, input_size_, | |||
| hidden_size_, hidden_size_, num_layers_, dropout_desc_, 0), | |||
| "set rnn_desc failed"); | |||
| #endif | |||
| auto weight_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 4); | |||
| size_t weight_size = weight_shape[0] * weight_shape[1] * weight_shape[2] * sizeof(T); | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| @@ -114,13 +114,21 @@ class LstmGradWeightGpuKernel : public GpuKernel { | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetDropoutDescriptor(dropout_desc_, handle_, dropout_, nullptr, 0, 0), | |||
| "set dropout_desc failed"); | |||
| cudnnRNNBiasMode_t bias_mode = has_bias_ ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS; | |||
| #if CUDNN_VERSION < 8000 | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetRNNDescriptor(handle_, rnn_desc_, hidden_size_, num_layers_, dropout_desc_, | |||
| input_mode, direction, rnn_mode, algo, cudnn_data_type_), | |||
| cudnnSetRNNDescriptor_v6(handle_, rnn_desc_, hidden_size_, num_layers_, dropout_desc_, | |||
| input_mode, direction, rnn_mode, algo, cudnn_data_type_), | |||
| "set rnn_desc failed"); | |||
| cudnnRNNBiasMode_t bias_mode = has_bias_ ? CUDNN_RNN_DOUBLE_BIAS : CUDNN_RNN_NO_BIAS; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnSetRNNBiasMode(rnn_desc_, bias_mode), "set bias_mode failed"); | |||
| #else | |||
| cudnnMathType_t math_type = (cudnn_data_type_ == CUDNN_DATA_HALF) ? CUDNN_TENSOR_OP_MATH : CUDNN_FMA_MATH; | |||
| CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, | |||
| cudnnSetRNNDescriptor_v8(rnn_desc_, algo, rnn_mode, bias_mode, direction, input_mode, | |||
| cudnn_data_type_, cudnn_data_type_, math_type, input_size_, | |||
| hidden_size_, hidden_size_, num_layers_, dropout_desc_, 0), | |||
| "set rnn_desc failed"); | |||
| #endif | |||
| auto weight_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| size_t weight_size = weight_shape[0] * weight_shape[1] * weight_shape[2] * sizeof(T); | |||