Merge pull request !5614 from chenzupeng/master-litetags/v1.0.0
| @@ -1,11 +1,14 @@ | |||
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void reshape(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 size) { | |||
| __kernel void reshape(__read_only image2d_t src_data, __write_only image2d_t dst_data, int4 size, int4 size_out) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| if (X >= size.x || Y >= size.y || Z >= size.z) { | |||
| if (X >= size_out.x || Y >= size_out.y || Z >= size_out.z) { | |||
| return; | |||
| } | |||
| WRITE_IMAGE(dst_data, (int2)(Y * size.z + Z, X), READ_IMAGE(src_data, smp_zero, (int2)(Y * size.z + Z, X))); | |||
| int out_index = X * size_out.y + Y; | |||
| int ih = out_index / size.y; | |||
| int iw = out_index % size.y; | |||
| WRITE_IMAGE(dst_data, (int2)(Y * size.z + Z, X), READ_IMAGE(src_data, smp_zero, (int2)(iw * size.z + Z, ih))); | |||
| } | |||
| @@ -1,16 +1,21 @@ | |||
| __kernel void SoftMax_BUF(__global float4 *input, __global float4 *output, const int4 input_shape) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| #ifdef cl_khr_fp16 | |||
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| #endif | |||
| __constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST; | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void SoftMax_BUF(__read_only image2d_t input, __global FLT4 *output, const int4 input_shape) { | |||
| int X = get_global_id(0); // H | |||
| int Y = get_global_id(1); // W | |||
| int H = input_shape.x; | |||
| int W = input_shape.y; | |||
| int C = input_shape.z; | |||
| int S = input_shape.w; | |||
| if (X >= W || Y >= H) return; | |||
| if (X >= H || Y >= W) return; | |||
| float sum = 0.0f; | |||
| FLT sum = 0.0f; | |||
| for (int d = 0; d < S; ++d) { | |||
| float4 t = input[(Y * W + X * H) * C + d]; | |||
| FLT4 t = READ_IMAGE(input, smp_zero, (int2)(Y * S + d, X)); | |||
| sum += exp(t.x); | |||
| if (d * 4 + 1 < C) sum += exp(t.y); | |||
| if (d * 4 + 2 < C) sum += exp(t.z); | |||
| @@ -18,15 +23,17 @@ __kernel void SoftMax_BUF(__global float4 *input, __global float4 *output, const | |||
| } | |||
| for (int d = 0; d < S; ++d) { | |||
| float4 t = input[(Y * W + X * H) * C + d]; | |||
| FLT4 t = READ_IMAGE(input, smp_zero, (int2)(Y * S + d, X)); | |||
| t = exp(t) / sum; | |||
| float4 result = convert_float4(t); | |||
| output[(Y * W + X * H) * C + d] = result; | |||
| __global FLT *output_flt = (__global FLT *)output; | |||
| output_flt += (X * W + Y) * C + 4 * d; | |||
| output_flt[0] = t.x; | |||
| if (d * 4 + 1 < C) output_flt[1] += t.y; | |||
| if (d * 4 + 2 < C) output_flt[2] += t.z; | |||
| if (d * 4 + 3 < C) output_flt[3] += t.w; | |||
| } | |||
| } | |||
| __constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST; | |||
| __kernel void SoftMax_IMG(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| @@ -34,7 +41,7 @@ __kernel void SoftMax_IMG(__read_only image2d_t input, __write_only image2d_t ou | |||
| float sum = 0.0f; | |||
| for (int d = 0; d < input_shape.w; ++d) { | |||
| float4 t = read_imagef(input, smp_none, (int2)(Y * input_shape.w + d, X)); | |||
| FLT4 t = READ_IMAGE(input, smp_none, (int2)(Y * input_shape.w + d, X)); | |||
| sum += exp(t.x); | |||
| if (d * 4 + 1 < input_shape.z) sum += exp(t.y); | |||
| if (d * 4 + 2 < input_shape.z) sum += exp(t.z); | |||
| @@ -42,9 +49,112 @@ __kernel void SoftMax_IMG(__read_only image2d_t input, __write_only image2d_t ou | |||
| } | |||
| for (int d = 0; d < input_shape.w; ++d) { | |||
| float4 t = read_imagef(input, smp_none, (int2)(Y * input_shape.w + d, X)); | |||
| FLT4 t = READ_IMAGE(input, smp_none, (int2)(Y * input_shape.w + d, X)); | |||
| t = exp(t) / sum; | |||
| float4 result = convert_float4(t); | |||
| write_imagef(output, (int2)(Y * input_shape.w + d, X), result); | |||
| FLT4 result = TO_FLT4(t); | |||
| WRITE_IMAGE(output, (int2)(Y * input_shape.w + d, X), result); | |||
| } | |||
| } | |||
| __kernel void SoftMax1x1_IMG(__read_only image2d_t input, __write_only image2d_t output, const FLT4 mask, | |||
| const int slices, const int slices_x32) { | |||
| int tid = get_local_id(0); | |||
| int slices_count = 0; | |||
| int offset = 0; | |||
| FLT sum = 0.0f; | |||
| do { | |||
| int z = offset + tid; | |||
| if (z < slices) { | |||
| FLT4 mask_temp = z == slices - 1 ? mask : (FLT4)(1.0f); | |||
| FLT4 src = READ_IMAGE(input, smp_none, (int2)(0, 0)); | |||
| sum += dot(mask_temp, exp(src)); | |||
| offset += 32; | |||
| } | |||
| slices_count++; | |||
| } while (slices_count < slices_x32); | |||
| __local FLT4 tmp[8]; | |||
| __local FLT *tmpx1 = (__local FLT *)tmp; | |||
| tmpx1[tid] = sum; | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| if (tid == 0) { | |||
| sum = dot((FLT4)(1.0f), tmp[0]); | |||
| sum += dot((FLT4)(1.0f), tmp[1]); | |||
| sum += dot((FLT4)(1.0f), tmp[2]); | |||
| sum += dot((FLT4)(1.0f), tmp[3]); | |||
| sum += dot((FLT4)(1.0f), tmp[4]); | |||
| sum += dot((FLT4)(1.0f), tmp[5]); | |||
| sum += dot((FLT4)(1.0f), tmp[6]); | |||
| sum += dot((FLT4)(1.0f), tmp[7]); | |||
| tmpx1[0] = 1.0f / sum; | |||
| } | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| sum = tmpx1[0]; | |||
| offset = 0; | |||
| slices_count = 0; | |||
| do { | |||
| int z = offset + tid; | |||
| if (z < slices) { | |||
| FLT4 res = TO_FLT4(exp(READ_IMAGE(input, smp_none, (int2)(0, 0))) * sum); | |||
| WRITE_IMAGE(output, (int2)(0, 0), res); | |||
| offset += 32; | |||
| } | |||
| slices_count++; | |||
| } while (slices_count < slices_x32); | |||
| } | |||
| __kernel void SoftMax1x1_BUF(__read_only image2d_t input, __global FLT4 *output, const float4 mask, const int slices, | |||
| const int slices_x32) { | |||
| int tid = get_local_id(0); | |||
| FLT sum = 0.0f; | |||
| for (size_t i = tid; i < slices - 1; i += 32) { | |||
| FLT4 src = READ_IMAGE(input, smp_zero, (int2)(i, 0)); | |||
| sum += dot((FLT4)(1.0f), exp(src)); | |||
| } | |||
| if ((slices - 1) % 32 == tid) { | |||
| FLT4 src = READ_IMAGE(input, smp_zero, (int2)(slices - 1, 0)); | |||
| sum += dot(TO_FLT4(mask), exp(src)); | |||
| } | |||
| __local FLT4 tmp[8]; | |||
| __local FLT *tmpx1 = (__local FLT *)tmp; | |||
| tmpx1[tid] = sum; | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| if (tid == 0) { | |||
| sum = dot((FLT4)(1.0f), tmp[0]); | |||
| sum += dot((FLT4)(1.0f), tmp[1]); | |||
| sum += dot((FLT4)(1.0f), tmp[2]); | |||
| sum += dot((FLT4)(1.0f), tmp[3]); | |||
| sum += dot((FLT4)(1.0f), tmp[4]); | |||
| sum += dot((FLT4)(1.0f), tmp[5]); | |||
| sum += dot((FLT4)(1.0f), tmp[6]); | |||
| sum += dot((FLT4)(1.0f), tmp[7]); | |||
| tmpx1[0] = 1.0f / sum; | |||
| } | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| sum = tmpx1[0]; | |||
| for (size_t i = tid; i < slices - 1; i += 32) { | |||
| FLT4 result = READ_IMAGE(input, smp_zero, (int2)(i, 0)); | |||
| result = exp(result) * sum; | |||
| output[i] = result; | |||
| } | |||
| if ((slices - 1) % 32 == tid) { | |||
| FLT4 result = READ_IMAGE(input, smp_zero, (int2)(slices - 1, 0)); | |||
| result = exp(result) * sum; | |||
| __global FLT4 *remain_ptr4 = output; | |||
| remain_ptr4 += slices - 1; | |||
| __global FLT *remain_ptr = (__global FLT *)remain_ptr4; | |||
| remain_ptr[0] = result.x; | |||
| if (mask.y > 0.f) { | |||
| remain_ptr[1] = result.y; | |||
| } | |||
| if (mask.z > 0.f) { | |||
| remain_ptr[2] = result.z; | |||
| } | |||
| if (mask.w > 0.f) { | |||
| remain_ptr[3] = result.w; | |||
| } | |||
| } | |||
| } | |||
| @@ -1,104 +0,0 @@ | |||
| __constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST; | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| // what is mask and args.slices_x32 | |||
| __kernel void SoftMax1x1_IMG(__read_only image2d_t input, __write_only image2d_t output, const float4 mask, | |||
| const int slices, const int slices_x32) { | |||
| int tid = get_local_id(0); | |||
| int slices_count = 0; | |||
| int offset = 0; | |||
| float sum = 0.0f; | |||
| do { | |||
| int z = offset + tid; | |||
| if (z < slices) { | |||
| float4 mask_temp = z == slices - 1 ? mask : (float4)(1.0f); | |||
| float4 src = read_imagef(input, smp_none, (int2)(0, 0)); | |||
| sum += dot(mask_temp, exp(src)); | |||
| offset += 32; | |||
| } | |||
| slices_count++; | |||
| } while (slices_count < slices_x32); | |||
| __local float4 tmp[8]; | |||
| __local float *tmpx1 = (__local float *)tmp; | |||
| tmpx1[tid] = sum; | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| if (tid == 0) { | |||
| sum = dot((float4)(1.0f), tmp[0]); | |||
| sum += dot((float4)(1.0f), tmp[1]); | |||
| sum += dot((float4)(1.0f), tmp[2]); | |||
| sum += dot((float4)(1.0f), tmp[3]); | |||
| sum += dot((float4)(1.0f), tmp[4]); | |||
| sum += dot((float4)(1.0f), tmp[5]); | |||
| sum += dot((float4)(1.0f), tmp[6]); | |||
| sum += dot((float4)(1.0f), tmp[7]); | |||
| tmpx1[0] = 1.0f / sum; | |||
| } | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| sum = tmpx1[0]; | |||
| offset = 0; | |||
| slices_count = 0; | |||
| do { | |||
| int z = offset + tid; | |||
| if (z < slices) { | |||
| float4 res = convert_float4(exp(read_imagef(input, smp_none, (int2)(0, 0))) * sum); | |||
| write_imagef(output, (int2)(0, 0), res); | |||
| offset += 32; | |||
| } | |||
| slices_count++; | |||
| } while (slices_count < slices_x32); | |||
| } | |||
| __kernel void SoftMax1x1_BUF(__read_only image2d_t input, __global float4 *output, const float4 mask, const int slices, | |||
| const int slices_x32) { | |||
| int tid = get_local_id(0); | |||
| float sum = 0.0f; | |||
| for (size_t i = tid; i < slices - 1; i += 32) { | |||
| float4 src = read_imagef(input, smp_zero, (int2)(i, 0)); | |||
| sum += dot((float4)(1.0f), exp(src)); | |||
| } | |||
| if ((slices - 1) % 32 == tid) { | |||
| float4 src = read_imagef(input, smp_zero, (int2)(slices - 1, 0)); | |||
| sum += dot(mask, exp(src)); | |||
| } | |||
| __local float4 tmp[8]; | |||
| __local float *tmpx1 = (__local float *)tmp; | |||
| tmpx1[tid] = sum; | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| if (tid == 0) { | |||
| sum = dot((float4)(1.0f), tmp[0]); | |||
| sum += dot((float4)(1.0f), tmp[1]); | |||
| sum += dot((float4)(1.0f), tmp[2]); | |||
| sum += dot((float4)(1.0f), tmp[3]); | |||
| sum += dot((float4)(1.0f), tmp[4]); | |||
| sum += dot((float4)(1.0f), tmp[5]); | |||
| sum += dot((float4)(1.0f), tmp[6]); | |||
| sum += dot((float4)(1.0f), tmp[7]); | |||
| tmpx1[0] = 1.0f / sum; | |||
| } | |||
| barrier(CLK_LOCAL_MEM_FENCE); | |||
| sum = tmpx1[0]; | |||
| for (size_t i = tid; i < slices - 1; i += 32) { | |||
| float4 result = read_imagef(input, smp_zero, (int2)(i, 0)); | |||
| result = exp(result) * sum; | |||
| output[i] = result; | |||
| } | |||
| if ((slices - 1) % 32 == tid) { | |||
| float4 result = read_imagef(input, smp_zero, (int2)(slices - 1, 0)); | |||
| result = exp(result) * sum; | |||
| __global float4 *remain_ptr4 = output; | |||
| remain_ptr4 += slices - 1; | |||
| __global float *remain_ptr = (__global float *)remain_ptr4; | |||
| remain_ptr[0] = result.x; | |||
| if (mask.y > 0.f) { | |||
| remain_ptr[1] = result.y; | |||
| } | |||
| if (mask.z > 0.f) { | |||
| remain_ptr[2] = result.z; | |||
| } | |||
| if (mask.w > 0.f) { | |||
| remain_ptr[3] = result.w; | |||
| } | |||
| } | |||
| } | |||
| @@ -1,4 +1,6 @@ | |||
| #ifdef cl_khr_fp16 | |||
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| #endif | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void transpose_IMG(__read_only image2d_t src_data, __write_only image2d_t dst_data, int2 HW, int2 C) { | |||
| int X = get_global_id(0); | |||
| @@ -41,7 +43,7 @@ __kernel void transpose_IMG(__read_only image2d_t src_data, __write_only image2d | |||
| WRITE_IMAGE(dst_data, (int2)(X, 4 * Y + 3), result[3]); | |||
| } | |||
| __kernel void transpose_BUF(__read_only image2d_t src_data, global FLT4 *dst_data, int2 HW, int2 C) { | |||
| __kernel void transpose_BUF(__read_only image2d_t src_data, global FLT4 *dst_data, int2 HW, int2 C, int W) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| if (X >= HW.y || Y >= C.y) { | |||
| @@ -52,10 +54,10 @@ __kernel void transpose_BUF(__read_only image2d_t src_data, global FLT4 *dst_dat | |||
| result[1] = (FLT4)(0.0f); | |||
| result[2] = (FLT4)(0.0f); | |||
| result[3] = (FLT4)(0.0f); | |||
| FLT4 x0 = READ_IMAGE(src_data, smp_zero, (int2)(Y, 4 * X)); | |||
| FLT4 x1 = READ_IMAGE(src_data, smp_zero, (int2)(Y, 4 * X + 1)); | |||
| FLT4 x2 = READ_IMAGE(src_data, smp_zero, (int2)(Y, 4 * X + 2)); | |||
| FLT4 x3 = READ_IMAGE(src_data, smp_zero, (int2)(Y, 4 * X + 3)); | |||
| FLT4 x0 = READ_IMAGE(src_data, smp_zero, (int2)((4 * X) % W * C.y + Y, (4 * X) / W)); | |||
| FLT4 x1 = READ_IMAGE(src_data, smp_zero, (int2)((4 * X + 1) % W * C.y + Y, (4 * X + 1) / W)); | |||
| FLT4 x2 = READ_IMAGE(src_data, smp_zero, (int2)((4 * X + 2) % W * C.y + Y, (4 * X + 2) / W)); | |||
| FLT4 x3 = READ_IMAGE(src_data, smp_zero, (int2)((4 * X + 3) % W * C.y + Y, (4 * X + 3) / W)); | |||
| result[0].x = x0.x; | |||
| result[0].y = x1.x; | |||
| result[0].z = x2.x; | |||
| @@ -65,7 +65,8 @@ int PoolingOpenCLKernel::Init() { | |||
| kernel_ = ocl_runtime->GetKernelFromBinary(kernel_name); | |||
| #else | |||
| if (out_mem_type_ == OpenCLMemType::BUF) { | |||
| kernel_name += "_BUF"; | |||
| MS_LOG(ERROR) << "buffer output not support yet."; | |||
| return RET_ERROR; | |||
| } else { | |||
| kernel_name += "_IMG"; | |||
| } | |||
| @@ -68,10 +68,16 @@ int ReshapeOpenCLKernel::ReSize() { return RET_OK; } | |||
| int ReshapeOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) { | |||
| size_t im_dst_x, im_dst_y; | |||
| std::vector<int> shapex = in_tensors_[0]->shape(); | |||
| int h = shapex[1]; | |||
| int w = shapex[2]; | |||
| int c = shapex[3]; | |||
| std::vector<int> shapex = out_tensors_[0]->shape(); | |||
| int h, w, c; | |||
| if (shapex.size() == 2) { | |||
| h = w = 1; | |||
| c = shapex[1]; | |||
| } else { | |||
| h = shapex[1]; | |||
| w = shapex[2]; | |||
| c = shapex[3]; | |||
| } | |||
| im_dst_x = w * UP_DIV(c, C4NUM); | |||
| im_dst_y = h; | |||
| size_t img_dtype = CL_FLOAT; | |||
| @@ -91,13 +97,23 @@ int ReshapeOpenCLKernel::Run() { | |||
| int w = shapex[2]; | |||
| int c = shapex[3]; | |||
| int c4 = UP_DIV(c, C4NUM); | |||
| int oh, ow; | |||
| if (out_tensors_[0]->shape().size() == 2) { | |||
| oh = ow = 1; | |||
| } else { | |||
| oh = out_tensors_[0]->shape()[1]; | |||
| ow = out_tensors_[0]->shape()[2]; | |||
| } | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| std::vector<size_t> local = {}; | |||
| std::vector<size_t> global = {(size_t)h, (size_t)w, (size_t)c4}; | |||
| std::vector<size_t> global = {(size_t)oh, (size_t)ow, (size_t)c4}; | |||
| cl_int4 size = {h, w, c4, 1}; | |||
| ocl_runtime->SetKernelArg(kernel_, 0, in_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 1, out_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 2, size); | |||
| cl_int4 size_out = {oh, ow, c4, 1}; | |||
| int arg_idx = 0; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, size); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, size_out); | |||
| ocl_runtime->RunKernel(kernel_, global, local, nullptr); | |||
| return RET_OK; | |||
| } | |||
| @@ -23,7 +23,6 @@ | |||
| #include "src/runtime/kernel/opencl/utils.h" | |||
| #ifndef PROGRAM_WITH_IL | |||
| #include "src/runtime/kernel/opencl/cl/softmax.cl.inc" | |||
| #include "src/runtime/kernel/opencl/cl/softmax1x1.cl.inc" | |||
| #endif | |||
| using mindspore::kernel::KERNEL_ARCH::kGPU; | |||
| @@ -42,8 +41,8 @@ std::vector<float> SoftmaxOpenCLKernel::GetMaskForLastChannel(int channels) { | |||
| } | |||
| int SoftmaxOpenCLKernel::InitGlobalSize() { | |||
| const size_t global_x = out_tensors_[0]->Height(); | |||
| const size_t global_y = out_tensors_[0]->Width(); | |||
| const size_t global_x = out_tensors_[0]->shape()[1]; | |||
| const size_t global_y = out_tensors_[0]->shape()[2]; | |||
| const size_t global_z = 1; | |||
| global_size_ = {global_x, global_y, global_z}; | |||
| return lite::RET_OK; | |||
| @@ -74,11 +73,10 @@ int SoftmaxOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) | |||
| im_dst_x = out_tensors_[0]->Width() * CO4; | |||
| im_dst_y = out_tensors_[0]->Height(); | |||
| } | |||
| #ifdef ENABLE_FP16 | |||
| size_t img_dtype = CL_HALF_FLOAT; | |||
| #else | |||
| size_t img_dtype = CL_FLOAT; | |||
| #endif | |||
| if (enable_fp16_) { | |||
| img_dtype = CL_HALF_FLOAT; | |||
| } | |||
| img_size->clear(); | |||
| std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype}; | |||
| *img_size = vec; | |||
| @@ -90,27 +88,28 @@ int SoftmaxOpenCLKernel::Init() { | |||
| std::string program_name = "SoftMax"; | |||
| std::string source = softmax_source; | |||
| runtime_ = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| enable_fp16_ = runtime_->GetFp16Enable(); | |||
| // framework not set this param yet! just use default. | |||
| if (parameter_->axis_ == -1) { | |||
| parameter_->axis_ = 1; | |||
| } | |||
| if (in_tensors_[0]->shape().size() == 4 && parameter_->axis_ == 3) { | |||
| if (in_tensors_[0]->shape().size() == 4) { | |||
| // support 4d tensor | |||
| onexone_flag_ = false; | |||
| } else if (in_tensors_[0]->shape().size() == 2 && parameter_->axis_ == 1) { | |||
| } else if (in_tensors_[0]->shape().size() == 2) { | |||
| // support 2d tensor | |||
| kernel_name += "1x1"; | |||
| program_name += "1x1"; | |||
| source = softmax1x1_source; | |||
| onexone_flag_ = true; | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "Init `Softmax` kernel failed: Unsupported axis: " << parameter_->axis_; | |||
| MS_LOG(ERROR) << "Init `Softmax` kernel failed: Unsupported shape size: " << in_tensors_[0]->shape().size(); | |||
| return RET_ERROR; | |||
| } | |||
| #ifdef PROGRAM_WITH_IL | |||
| kernel_ = ocl_runtime->GetKernelFromBinary(kernel_name); | |||
| #else | |||
| if (!is_image_out_) { | |||
| out_mem_type_ = OpenCLMemType::BUF; | |||
| } else { | |||
| MS_LOG(ERROR) << "image2d output not support yet."; | |||
| return RET_ERROR; | |||
| } | |||
| if (out_mem_type_ == OpenCLMemType::BUF) { | |||
| kernel_name += "_BUF"; | |||
| @@ -124,12 +123,23 @@ int SoftmaxOpenCLKernel::Init() { | |||
| runtime_->BuildKernel(kernel_, program_name, kernel_name, build_options); | |||
| #endif | |||
| in_ori_format_ = in_tensors_[0]->GetFormat(); | |||
| in_tensors_[0]->SetFormat(schema::Format_NHWC4); | |||
| out_ori_format_ = out_tensors_[0]->GetFormat(); | |||
| out_tensors_[0]->SetFormat(schema::Format_NHWC4); | |||
| if (!is_image_out_) { | |||
| out_ori_format_ = schema::Format_NC; | |||
| out_tensors_[0]->SetFormat(schema::Format_NC); | |||
| if (in_tensors_[0]->shape().size() == 2) { | |||
| in_tensors_[0]->SetFormat(schema::Format_NC4); | |||
| } else { | |||
| in_tensors_[0]->SetFormat(schema::Format_NHWC4); | |||
| } | |||
| if (is_image_out_) { | |||
| if (out_tensors_[0]->shape().size() == 2) { | |||
| out_ori_format_ = schema::Format_NC; | |||
| out_tensors_[0]->SetFormat(schema::Format_NC4); | |||
| } else { | |||
| out_ori_format_ = schema::Format_NHWC; | |||
| out_tensors_[0]->SetFormat(schema::Format_NHWC4); | |||
| } | |||
| } else { | |||
| out_tensors_[0]->SetFormat(out_ori_format_); | |||
| } | |||
| MS_LOG(DEBUG) << kernel_name << " Init Done!"; | |||
| return lite::RET_OK; | |||
| @@ -147,17 +157,25 @@ int SoftmaxOpenCLKernel::Run() { | |||
| cl_float4 mask = {mask_[0], mask_[1], mask_[2], mask_[3]}; | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data()); | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| if (is_image_out_) { | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| } else { | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data(), lite::opencl::MemType::BUF); | |||
| } | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, mask); | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, slices); | |||
| runtime_->SetKernelArg(kernel_, arg_idx, slices_x32); | |||
| SetWorkGroupSize1x1(); | |||
| } else { | |||
| int slices = UP_DIV(out_tensors_[0]->Channel(), C4NUM); | |||
| cl_int4 input_shape = {in_tensors_[0]->Height(), in_tensors_[0]->Width(), in_tensors_[0]->Channel(), slices}; | |||
| int slices = UP_DIV(out_tensors_[0]->shape()[3], C4NUM); | |||
| cl_int4 input_shape = {in_tensors_[0]->shape()[1], in_tensors_[0]->shape()[2], in_tensors_[0]->shape()[3], slices}; | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data()); | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| if (is_image_out_) { | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| } else { | |||
| runtime_->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data(), lite::opencl::MemType::BUF); | |||
| } | |||
| runtime_->SetKernelArg(kernel_, arg_idx, input_shape); | |||
| SetWorkGroupSize(); | |||
| } | |||
| @@ -193,4 +211,5 @@ kernel::LiteKernel *OpenCLSoftMaxKernelCreator(const std::vector<lite::tensor::T | |||
| } | |||
| REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_SoftMax, OpenCLSoftMaxKernelCreator) | |||
| REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_SoftMax, OpenCLSoftMaxKernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -52,6 +52,7 @@ class SoftmaxOpenCLKernel : public OpenCLKernel { | |||
| std::vector<size_t> local_size_; | |||
| std::vector<size_t> global_size_; | |||
| bool is_image_out_{false}; | |||
| bool enable_fp16_{false}; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -119,11 +119,9 @@ int ToFormatOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size | |||
| im_dst_x = w * UP_DIV(c, C4NUM); | |||
| im_dst_y = h; | |||
| } else if (out_tensors_[0]->GetFormat() == schema::Format_NC4) { | |||
| const int h = 1; | |||
| const int w = 1; | |||
| int c = shapex[1]; | |||
| im_dst_x = w * UP_DIV(c, C4NUM); | |||
| im_dst_y = h; | |||
| im_dst_x = UP_DIV(c, C4NUM); | |||
| im_dst_y = 1; | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported format. " << out_tensors_[0]->GetFormat(); | |||
| return RET_ERROR; | |||
| @@ -69,7 +69,7 @@ int TransposeOpenCLKernel::ReSize() { return RET_OK; } | |||
| int TransposeOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) { | |||
| size_t im_dst_x, im_dst_y; | |||
| im_dst_x = UP_DIV(out_tensors_[0]->Height() * out_tensors_[0]->Width(), C4NUM); | |||
| im_dst_x = out_tensors_[0]->Height() * UP_DIV(out_tensors_[0]->Width(), C4NUM); | |||
| im_dst_y = out_tensors_[0]->Channel(); | |||
| size_t img_dtype = CL_FLOAT; | |||
| if (enable_fp16_) { | |||
| @@ -96,10 +96,12 @@ int TransposeOpenCLKernel::Run() { | |||
| cl_int2 HW = {h * w, hw4}; | |||
| cl_int2 C = {c, c4}; | |||
| ocl_runtime->SetKernelArg(kernel_, 0, in_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 1, out_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 2, HW); | |||
| ocl_runtime->SetKernelArg(kernel_, 3, C); | |||
| int arg_idx = 0; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, HW); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, C); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, w); | |||
| ocl_runtime->RunKernel(kernel_, global, local, nullptr); | |||
| return RET_OK; | |||
| } | |||
| @@ -86,14 +86,14 @@ void RunTestCaseReshape(const std::vector<int> &shape, void *input_data, void *o | |||
| inputs[0]->SetData(nullptr); | |||
| outputs[0]->SetData(nullptr); | |||
| MS_LOG(INFO) << "Test ReshapeFp32 passed"; | |||
| MS_LOG(INFO) << "Test Reshape passed"; | |||
| lite::opencl::OpenCLRuntime::DeleteInstance(); | |||
| } | |||
| TEST_F(TestReshapeOpenCL, ReshapeFp32) { | |||
| int c = 7; | |||
| std::vector<int> shape = {c}; | |||
| std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f}; | |||
| std::vector<float> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}; | |||
| std::vector<float> output_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}; | |||
| RunTestCaseReshape(shape, input_data.data(), output_data.data(), false); | |||
| @@ -102,7 +102,7 @@ TEST_F(TestReshapeOpenCL, ReshapeFp32) { | |||
| TEST_F(TestReshapeOpenCL, ReshapeFp16) { | |||
| int c = 7; | |||
| std::vector<int> shape = {c}; | |||
| std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f}; | |||
| std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}; | |||
| std::vector<float16_t> output_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}; | |||
| RunTestCaseReshape(shape, input_data.data(), output_data.data(), true); | |||
| @@ -17,94 +17,134 @@ | |||
| #include <memory> | |||
| #include "mindspore/core/utils/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/src/common/file_utils.h" | |||
| #include "mindspore/lite/src/runtime/opencl/opencl_runtime.h" | |||
| #include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h" | |||
| #include "mindspore/lite/src/runtime/kernel/opencl/kernel/softmax.h" | |||
| #include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h" | |||
| namespace mindspore { | |||
| class TestSoftmaxOpenCL : public mindspore::CommonTest { | |||
| public: | |||
| TestSoftmaxOpenCL() {} | |||
| }; | |||
| class TestSoftmaxOpenCL : public mindspore::CommonTest {}; | |||
| void RunTestCase(std::vector<int> input_shape, std::vector<int> output_shape, std::string input_file, | |||
| std::string expect_file, SoftmaxParameter *param, schema::Format format) { | |||
| void RunTestCaseSoftmax(const std::vector<int> &shape, void *input_data, void *output_data, bool enable_fp16) { | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->Init(); | |||
| size_t dtype_size = sizeof(float); | |||
| if (enable_fp16) { | |||
| ocl_runtime->SetFp16Enable(true); | |||
| dtype_size = sizeof(float16_t); | |||
| } | |||
| auto allocator = ocl_runtime->GetAllocator(); | |||
| // define tensor | |||
| MS_LOG(INFO) << "defineTensor"; | |||
| auto data_type = kNumberTypeFloat32; | |||
| auto tensorType = schema::NodeType_ValueNode; | |||
| auto input_tensor = new (std::nothrow) lite::tensor::Tensor(data_type, input_shape, format, tensorType); | |||
| auto output_tensor = new (std::nothrow) lite::tensor::Tensor(data_type, output_shape, format, tensorType); | |||
| if (input_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "input tensor null"; | |||
| int n, h, w, c; | |||
| bool is_2d = false; | |||
| if (shape.size() == 2) { | |||
| is_2d = true; | |||
| h = w = 1; | |||
| n = shape[0]; | |||
| c = shape[1]; | |||
| } else { | |||
| n = shape[0]; | |||
| h = shape[1]; | |||
| w = shape[2]; | |||
| c = shape[3]; | |||
| } | |||
| std::vector<int> input_shape = {n, h, w, c}; | |||
| if (is_2d) { | |||
| input_shape = {n, c}; | |||
| } | |||
| auto input_format = is_2d ? schema::Format_NC : schema::Format_NHWC; | |||
| auto input_dtype = enable_fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32; | |||
| auto tensor_x_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(input_dtype), input_shape, input_format); | |||
| auto tensor_x = tensor_x_ptr.get(); | |||
| if (tensor_x == nullptr) { | |||
| MS_LOG(ERROR) << "tensor_x create error."; | |||
| return; | |||
| } | |||
| if (output_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "output tensor null"; | |||
| auto tensor_out_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(input_dtype), input_shape, input_format); | |||
| auto tensor_out = tensor_out_ptr.get(); | |||
| if (tensor_out == nullptr) { | |||
| MS_LOG(ERROR) << "tensor_out create error."; | |||
| return; | |||
| } | |||
| std::vector<lite::tensor::Tensor *> inputs{input_tensor}; | |||
| std::vector<lite::tensor::Tensor *> outputs{output_tensor}; | |||
| // run | |||
| MS_LOG(INFO) << "NewOpenCLKernel"; | |||
| auto *kernel = new kernel::SoftmaxOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "kernel null"; | |||
| std::vector<lite::tensor::Tensor *> inputs{tensor_x}; | |||
| std::vector<lite::tensor::Tensor *> outputs{tensor_out}; | |||
| auto arith_kernel_ptr = std::make_unique<kernel::SoftmaxOpenCLKernel>(nullptr, inputs, outputs); | |||
| auto arith_kernel = arith_kernel_ptr.get(); | |||
| if (arith_kernel == nullptr) { | |||
| MS_LOG(ERROR) << "arith_kernel create error."; | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "KernelInit"; | |||
| kernel->Init(); | |||
| arith_kernel->Init(); | |||
| std::vector<kernel::LiteKernel *> kernels{kernel}; | |||
| inputs[0]->MallocData(allocator); | |||
| auto *pGraph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); | |||
| std::vector<kernel::LiteKernel *> kernels{arith_kernel}; | |||
| auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs, outputs, kernels, kernels, kernels); | |||
| auto pGraph = pGraph_ptr.get(); | |||
| if (pGraph == nullptr) { | |||
| MS_LOG(ERROR) << "pGraph null"; | |||
| MS_LOG(ERROR) << "pGraph create error."; | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "pGraphinit"; | |||
| pGraph->Init(); | |||
| // load data | |||
| MS_LOG(INFO) << "load data1"; | |||
| LoadTestData(input_tensor->Data(), input_tensor->Size(), input_file); | |||
| auto *input_data = reinterpret_cast<float *>(input_tensor->Data()); | |||
| printf("\ninput[0:10]:"); | |||
| for (int i = 0; i < 10; i++) { | |||
| printf("[%d]:%.3f ", i, input_data[i]); | |||
| } | |||
| printf("\n\n"); | |||
| MS_LOG(INFO) << "Run"; | |||
| memcpy(inputs[0]->Data(), input_data, inputs[0]->ElementsNum() * dtype_size); | |||
| pGraph->Run(); | |||
| MS_LOG(INFO) << "compare result"; | |||
| CompareOutput(output_tensor, expect_file, static_cast<float>(1e-5)); | |||
| for (auto tensor : inputs) { | |||
| delete tensor; | |||
| if (enable_fp16) { | |||
| CompareOutput(outputs[0]->Data(), output_data, outputs[0]->ElementsNum(), static_cast<float16_t>(1e-3), 2e-2); | |||
| } else { | |||
| CompareOutput(outputs[0]->Data(), output_data, outputs[0]->ElementsNum(), static_cast<float>(1e-5)); | |||
| } | |||
| for (auto tensor : outputs) { | |||
| delete tensor; | |||
| } | |||
| delete kernel; | |||
| delete pGraph; | |||
| inputs[0]->SetData(nullptr); | |||
| outputs[0]->SetData(nullptr); | |||
| MS_LOG(INFO) << "Test Softmax passed"; | |||
| lite::opencl::OpenCLRuntime::DeleteInstance(); | |||
| } | |||
| TEST_F(TestSoftmaxOpenCL, Softmax_1) { | |||
| std::vector<int> input_shape = {1, 2, 2, 8}; | |||
| std::vector<int> output_shape = {1, 2, 2, 8}; | |||
| std::string input_file = "softmax_in.bin"; | |||
| std::string expect_file = "softmax_out.bin"; | |||
| auto param = new (std::nothrow) SoftmaxParameter; | |||
| param->axis_ = 3; | |||
| schema::Format format = schema::Format_NHWC4; | |||
| TEST_F(TestSoftmaxOpenCL, Softmax2DFp32) { | |||
| int n = 1; | |||
| int c = 10; | |||
| std::vector<int> shape = {n, c}; | |||
| std::vector<float> input_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; | |||
| std::vector<float> output_data = {0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f}; | |||
| RunTestCaseSoftmax(shape, input_data.data(), output_data.data(), false); | |||
| } | |||
| TEST_F(TestSoftmaxOpenCL, Softmax2DFp16) { | |||
| int n = 1; | |||
| int c = 10; | |||
| std::vector<int> shape = {n, c}; | |||
| std::vector<float16_t> input_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; | |||
| std::vector<float16_t> output_data = {0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f}; | |||
| RunTestCase(input_shape, output_shape, input_file, expect_file, param, format); | |||
| RunTestCaseSoftmax(shape, input_data.data(), output_data.data(), true); | |||
| } | |||
| TEST_F(TestSoftmaxOpenCL, Softmax4DFp32) { | |||
| int n = 1; | |||
| int h = 2; | |||
| int w = 1; | |||
| int c = 5; | |||
| std::vector<int> shape = {n, h, w, c}; | |||
| std::vector<float> input_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; | |||
| std::vector<float> output_data = {0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f}; | |||
| RunTestCaseSoftmax(shape, input_data.data(), output_data.data(), false); | |||
| } | |||
| TEST_F(TestSoftmaxOpenCL, Softmax4DFp16) { | |||
| int n = 1; | |||
| int h = 2; | |||
| int w = 1; | |||
| int c = 5; | |||
| std::vector<int> shape = {n, h, w, c}; | |||
| std::vector<float16_t> input_data = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}; | |||
| std::vector<float16_t> output_data = {0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f}; | |||
| RunTestCaseSoftmax(shape, input_data.data(), output_data.data(), true); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -117,8 +117,8 @@ TEST_F(TestTransposeOpenCL, TransposeFp32) { | |||
| } | |||
| TEST_F(TestTransposeOpenCL, TransposeFp16) { | |||
| int h = 4; | |||
| int w = 1; | |||
| int h = 2; | |||
| int w = 2; | |||
| int c = 3; | |||
| std::vector<int> shape = {h, w, c}; | |||
| std::vector<float16_t> input_data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f}; | |||