| @@ -96,4 +96,8 @@ if (ENABLE_TESTCASES) | |||
| add_subdirectory(tests) | |||
| endif() | |||
| if (ENABLE_SERVING) | |||
| add_subdirectory(serving) | |||
| endif() | |||
| include(cmake/package.cmake) | |||
| @@ -53,6 +53,7 @@ usage() | |||
| echo " -V Specify the minimum required cuda version, default CUDA 9.2" | |||
| echo " -I Compile predict, default off" | |||
| echo " -K Compile with AKG, default off" | |||
| echo " -s Enable serving module, default off" | |||
| } | |||
| # check value of input is 'on' or 'off' | |||
| @@ -92,9 +93,9 @@ checkopts() | |||
| USE_GLOG="on" | |||
| PREDICT_PLATFORM="" | |||
| ENABLE_AKG="off" | |||
| ENABLE_SERVING="off" | |||
| # Process the options | |||
| while getopts 'drvj:c:t:hsb:a:g:p:ie:m:I:LRP:Q:D:zM:V:K' opt | |||
| while getopts 'drvj:c:t:hsb:a:g:p:ie:m:I:LRP:Q:D:zM:V:K:s' opt | |||
| do | |||
| OPTARG=$(echo ${OPTARG} | tr '[A-Z]' '[a-z]') | |||
| case "${opt}" in | |||
| @@ -235,6 +236,10 @@ checkopts() | |||
| ENABLE_AKG="on" | |||
| echo "enable compile with akg" | |||
| ;; | |||
| s) | |||
| ENABLE_SERVING="on" | |||
| echo "enable serving" | |||
| ;; | |||
| *) | |||
| echo "Unknown option ${opt}!" | |||
| usage | |||
| @@ -314,6 +319,10 @@ build_mindspore() | |||
| if [[ "X$ENABLE_AKG" = "Xon" ]] && [[ "X$ENABLE_D" = "Xon" ]]; then | |||
| CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_AKG=ON" | |||
| fi | |||
| if [[ "X$ENABLE_SERVING" = "Xon" ]]; then | |||
| CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_SERVING=ON" | |||
| fi | |||
| echo "${CMAKE_ARGS}" | |||
| if [[ "X$INC_BUILD" = "Xoff" ]]; then | |||
| cmake ${CMAKE_ARGS} ../.. | |||
| @@ -37,6 +37,8 @@ class MS_API MSSession { | |||
| }; | |||
| std::shared_ptr<FuncGraph> MS_API LoadModel(const char *model_buf, size_t size, const std::string &device); | |||
| void MS_API ExitInference(); | |||
| } // namespace inference | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_INCLUDE_MS_SESSION_H | |||
| @@ -247,7 +247,7 @@ add_library(inference SHARED | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/session/session.cc | |||
| ${LOAD_ONNX_SRC} | |||
| ) | |||
| target_link_libraries(inference PRIVATE ${PYTHON_LIB} ${SECUREC_LIBRARY} | |||
| target_link_libraries(inference PRIVATE ${PYTHON_LIBRARY} ${SECUREC_LIBRARY} | |||
| -Wl,--whole-archive mindspore -Wl,--no-whole-archive mindspore_gvar mindspore::protobuf) | |||
| if (ENABLE_CPU) | |||
| @@ -38,6 +38,18 @@ std::shared_ptr<FuncGraph> LoadModel(const char *model_buf, size_t size, const s | |||
| return anf_graph; | |||
| } | |||
| void ExitInference() { | |||
| auto ms_context = MsContext::GetInstance(); | |||
| if (ms_context == nullptr) { | |||
| MS_LOG(ERROR) << "Get Context failed!"; | |||
| return; | |||
| } | |||
| if (!ms_context->CloseTsd()) { | |||
| MS_LOG(ERROR) << "Inference CloseTsd failed!"; | |||
| return; | |||
| } | |||
| } | |||
| std::shared_ptr<MSSession> MSSession::CreateSession(const std::string &device, uint32_t device_id) { | |||
| auto session = std::make_shared<inference::Session>(); | |||
| auto ret = session->Init(device, device_id); | |||
| @@ -101,11 +113,14 @@ void Session::RegAllOp() { | |||
| uint32_t Session::CompileGraph(std::shared_ptr<FuncGraph> funcGraphPtr) { | |||
| MS_ASSERT(session_impl_ != nullptr); | |||
| return session_impl_->CompileGraph(NOT_NULL(funcGraphPtr)); | |||
| auto graph_id = session_impl_->CompileGraph(NOT_NULL(funcGraphPtr)); | |||
| py::gil_scoped_release gil_release; | |||
| return graph_id; | |||
| } | |||
| MultiTensor Session::RunGraph(uint32_t graph_id, const std::vector<std::shared_ptr<inference::MSTensor>> &inputs) { | |||
| std::vector<tensor::TensorPtr> inTensors; | |||
| inTensors.resize(inputs.size()); | |||
| bool has_error = false; | |||
| std::transform(inputs.begin(), inputs.end(), inTensors.begin(), | |||
| [&has_error](const std::shared_ptr<inference::MSTensor> &tensor_ptr) -> tensor::TensorPtr { | |||
| @@ -144,6 +159,14 @@ int Session::Init(const std::string &device, uint32_t device_id) { | |||
| return -1; | |||
| } | |||
| session_impl_->Init(device_id); | |||
| if (ms_context == nullptr) { | |||
| MS_LOG(ERROR) << "Get Context failed!"; | |||
| return -1; | |||
| } | |||
| if (!ms_context->OpenTsd()) { | |||
| MS_LOG(ERROR) << "Session init OpenTsd failed!"; | |||
| return -1; | |||
| } | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,69 @@ | |||
| find_package(Threads REQUIRED) | |||
| # This branch assumes that gRPC and all its dependencies are already installed | |||
| # on this system, so they can be located by find_package(). | |||
| # Find Protobuf installation | |||
| # Looks for protobuf-config.cmake file installed by Protobuf's cmake installation. | |||
| #set(protobuf_MODULE_COMPATIBLE TRUE) | |||
| #find_package(Protobuf CONFIG REQUIRED) | |||
| #message(STATUS "Using protobuf ${protobuf_VERSION}") | |||
| add_library(protobuf::libprotobuf ALIAS protobuf::protobuf) | |||
| add_executable(protobuf::libprotoc ALIAS protobuf::protoc) | |||
| set(_PROTOBUF_LIBPROTOBUF protobuf::libprotobuf) | |||
| set(_REFLECTION gRPC::grpc++_reflection) | |||
| if(CMAKE_CROSSCOMPILING) | |||
| find_program(_PROTOBUF_PROTOC protoc) | |||
| else() | |||
| set(_PROTOBUF_PROTOC $<TARGET_FILE:protobuf::protoc>) | |||
| endif() | |||
| # Find gRPC installation | |||
| # Looks for gRPCConfig.cmake file installed by gRPC's cmake installation. | |||
| find_package(gRPC CONFIG REQUIRED) | |||
| message(STATUS "Using gRPC ${gRPC_VERSION}") | |||
| set(_GRPC_GRPCPP gRPC::grpc++) | |||
| if(CMAKE_CROSSCOMPILING) | |||
| find_program(_GRPC_CPP_PLUGIN_EXECUTABLE grpc_cpp_plugin) | |||
| else() | |||
| set(_GRPC_CPP_PLUGIN_EXECUTABLE $<TARGET_FILE:gRPC::grpc_cpp_plugin>) | |||
| endif() | |||
| # Proto file | |||
| get_filename_component(hw_proto "ms_service.proto" ABSOLUTE) | |||
| get_filename_component(hw_proto_path "${hw_proto}" PATH) | |||
| # Generated sources | |||
| set(hw_proto_srcs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.pb.cc") | |||
| set(hw_proto_hdrs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.pb.h") | |||
| set(hw_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.grpc.pb.cc") | |||
| set(hw_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.grpc.pb.h") | |||
| add_custom_command( | |||
| OUTPUT "${hw_proto_srcs}" "${hw_proto_hdrs}" "${hw_grpc_srcs}" "${hw_grpc_hdrs}" | |||
| COMMAND ${_PROTOBUF_PROTOC} | |||
| ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}" | |||
| --cpp_out "${CMAKE_CURRENT_BINARY_DIR}" | |||
| -I "${hw_proto_path}" | |||
| --plugin=protoc-gen-grpc="${_GRPC_CPP_PLUGIN_EXECUTABLE}" | |||
| "${hw_proto}" | |||
| DEPENDS "${hw_proto}") | |||
| # Include generated *.pb.h files | |||
| include_directories("${CMAKE_CURRENT_BINARY_DIR}" "${CMAKE_CURRENT_SOURCE_DIR}" "${CMAKE_CURRENT_SOURCE_DIR}/core" | |||
| "${PROJECT_SOURCE_DIR}/mindspore/ccsrc") | |||
| file(GLOB_RECURSE CORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||
| "core/*.cc" "core/util/*.cc" "core/version_control/*.cc") | |||
| list(APPEND SERVING_SRC "main.cc" ${hw_proto_srcs} ${hw_grpc_srcs} ${CORE_SRC_LIST}) | |||
| include_directories(${CMAKE_BINARY_DIR}) | |||
| add_executable(ms_serving ${SERVING_SRC}) | |||
| target_link_libraries(ms_serving inference mindspore_gvar) | |||
| target_link_libraries(ms_serving ${_REFLECTION} ${_GRPC_GRPCPP} ${_PROTOBUF_LIBPROTOBUF} pthread) | |||
| if (ENABLE_D) | |||
| add_compile_definitions(ENABLE_D) | |||
| target_link_libraries(ms_serving ${RUNTIME_LIB}) | |||
| endif() | |||
| @@ -0,0 +1,36 @@ | |||
| # serving | |||
| #### Description | |||
| A flexible, high-performance serving system for deep learning models | |||
| #### Software Architecture | |||
| Software architecture description | |||
| #### Installation | |||
| 1. xxxx | |||
| 2. xxxx | |||
| 3. xxxx | |||
| #### Instructions | |||
| 1. xxxx | |||
| 2. xxxx | |||
| 3. xxxx | |||
| #### Contribution | |||
| 1. Fork the repository | |||
| 2. Create Feat_xxx branch | |||
| 3. Commit your code | |||
| 4. Create Pull Request | |||
| #### Gitee Feature | |||
| 1. You can use Readme\_XXX.md to support different languages, such as Readme\_en.md, Readme\_zh.md | |||
| 2. Gitee blog [blog.gitee.com](https://blog.gitee.com) | |||
| 3. Explore open source project [https://gitee.com/explore](https://gitee.com/explore) | |||
| 4. The most valuable open source project [GVP](https://gitee.com/gvp) | |||
| 5. The manual of Gitee [https://gitee.com/help](https://gitee.com/help) | |||
| 6. The most popular members [https://gitee.com/gitee-stars/](https://gitee.com/gitee-stars/) | |||
| @@ -0,0 +1,37 @@ | |||
| # serving | |||
| #### 介绍 | |||
| A flexible, high-performance serving system for deep learning models | |||
| #### 软件架构 | |||
| 软件架构说明 | |||
| #### 安装教程 | |||
| 1. xxxx | |||
| 2. xxxx | |||
| 3. xxxx | |||
| #### 使用说明 | |||
| 1. xxxx | |||
| 2. xxxx | |||
| 3. xxxx | |||
| #### 参与贡献 | |||
| 1. Fork 本仓库 | |||
| 2. 新建 Feat_xxx 分支 | |||
| 3. 提交代码 | |||
| 4. 新建 Pull Request | |||
| #### 码云特技 | |||
| 1. 使用 Readme\_XXX.md 来支持不同的语言,例如 Readme\_en.md, Readme\_zh.md | |||
| 2. 码云官方博客 [blog.gitee.com](https://blog.gitee.com) | |||
| 3. 你可以 [https://gitee.com/explore](https://gitee.com/explore) 这个地址来了解码云上的优秀开源项目 | |||
| 4. [GVP](https://gitee.com/gvp) 全称是码云最有价值开源项目,是码云综合评定出的优秀开源项目 | |||
| 5. 码云官方提供的使用手册 [https://gitee.com/help](https://gitee.com/help) | |||
| 6. 码云封面人物是一档用来展示码云会员风采的栏目 [https://gitee.com/gitee-stars/](https://gitee.com/gitee-stars/) | |||
| @@ -0,0 +1,277 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "core/server.h" | |||
| #include <grpcpp/grpcpp.h> | |||
| #include <grpcpp/health_check_service_interface.h> | |||
| #include <grpcpp/ext/proto_server_reflection_plugin.h> | |||
| #include <string> | |||
| #include <map> | |||
| #include <vector> | |||
| #include <utility> | |||
| #include <memory> | |||
| #include "mindspore/ccsrc/utils/log_adapter.h" | |||
| #include "serving/ms_service.grpc.pb.h" | |||
| #include "core/util/option_parser.h" | |||
| #include "core/version_control/version_controller.h" | |||
| #include "mindspore/ccsrc/utils/context/ms_context.h" | |||
| #include "core/util/file_system_operation.h" | |||
| #include "graphengine/third_party/fwkacllib/inc/runtime/context.h" | |||
| using ms_serving::MSService; | |||
| using ms_serving::PredictReply; | |||
| using ms_serving::PredictRequest; | |||
| namespace mindspore { | |||
| namespace serving { | |||
| using MSTensorPtr = std::shared_ptr<inference::MSTensor>; | |||
| Status Session::CreatDeviceSession(const std::string &device, uint32_t device_id) { | |||
| session_ = inference::MSSession::CreateSession(device + "Inference", device_id); | |||
| if (session_ == nullptr) { | |||
| MS_LOG(ERROR) << "Creat Session Failed"; | |||
| return FAILED; | |||
| } | |||
| device_type_ = device; | |||
| return SUCCESS; | |||
| } | |||
| Session &Session::Instance() { | |||
| static Session instance; | |||
| return instance; | |||
| } | |||
| Status Session::Predict(const std::vector<MSTensorPtr> &inputs, inference::MultiTensor *outputs) { | |||
| if (last_graph_ == nullptr) { | |||
| MS_LOG(ERROR) << "the model has not loaded"; | |||
| return FAILED; | |||
| } | |||
| if (session_ == nullptr) { | |||
| MS_LOG(ERROR) << "the inference session has not be initialized"; | |||
| return FAILED; | |||
| } | |||
| std::lock_guard<std::mutex> lock(mutex_); | |||
| MS_LOG(INFO) << "run Predict"; | |||
| *outputs = session_->RunGraph(graph_id_, inputs); | |||
| return SUCCESS; | |||
| } | |||
| Status Session::Warmup(const MindSporeModelPtr model) { | |||
| if (session_ == nullptr) { | |||
| MS_LOG(ERROR) << "The CreatDeviceSession should be called, before warmup"; | |||
| return FAILED; | |||
| } | |||
| std::lock_guard<std::mutex> lock(mutex_); | |||
| size_t size = 0; | |||
| std::string file_name = model->GetModelPath() + '/' + model->GetModelName(); | |||
| char *graphBuf = ReadFile(file_name.c_str(), &size); | |||
| if (graphBuf == nullptr) { | |||
| MS_LOG(ERROR) << "Load graph model failed, file name is " << file_name.c_str(); | |||
| return FAILED; | |||
| } | |||
| last_graph_ = inference::LoadModel(graphBuf, size, device_type_); | |||
| graph_id_ = session_->CompileGraph(last_graph_); | |||
| MS_LOG(INFO) << "Session Warmup"; | |||
| return SUCCESS; | |||
| } | |||
| Status Session::Clear() { | |||
| session_ = nullptr; | |||
| return SUCCESS; | |||
| } | |||
| namespace { | |||
| const std::map<ms_serving::DataType, TypeId> type2id_map{ | |||
| {ms_serving::MS_UNKNOWN, TypeId::kNumberTypeBegin}, {ms_serving::MS_BOOL, TypeId::kNumberTypeBool}, | |||
| {ms_serving::MS_INT8, TypeId::kNumberTypeInt8}, {ms_serving::MS_UINT8, TypeId::kNumberTypeUInt8}, | |||
| {ms_serving::MS_INT16, TypeId::kNumberTypeInt16}, {ms_serving::MS_UINT16, TypeId::kNumberTypeUInt16}, | |||
| {ms_serving::MS_INT32, TypeId::kNumberTypeInt32}, {ms_serving::MS_UINT32, TypeId::kNumberTypeUInt32}, | |||
| {ms_serving::MS_INT64, TypeId::kNumberTypeInt64}, {ms_serving::MS_UINT64, TypeId::kNumberTypeUInt64}, | |||
| {ms_serving::MS_FLOAT16, TypeId::kNumberTypeFloat16}, {ms_serving::MS_FLOAT32, TypeId::kNumberTypeFloat32}, | |||
| {ms_serving::MS_FLOAT64, TypeId::kNumberTypeFloat64}, | |||
| }; | |||
| const std::map<TypeId, ms_serving::DataType> id2type_map{ | |||
| {TypeId::kNumberTypeBegin, ms_serving::MS_UNKNOWN}, {TypeId::kNumberTypeBool, ms_serving::MS_BOOL}, | |||
| {TypeId::kNumberTypeInt8, ms_serving::MS_INT8}, {TypeId::kNumberTypeUInt8, ms_serving::MS_UINT8}, | |||
| {TypeId::kNumberTypeInt16, ms_serving::MS_INT16}, {TypeId::kNumberTypeUInt16, ms_serving::MS_UINT16}, | |||
| {TypeId::kNumberTypeInt32, ms_serving::MS_INT32}, {TypeId::kNumberTypeUInt32, ms_serving::MS_UINT32}, | |||
| {TypeId::kNumberTypeInt64, ms_serving::MS_INT64}, {TypeId::kNumberTypeUInt64, ms_serving::MS_UINT64}, | |||
| {TypeId::kNumberTypeFloat16, ms_serving::MS_FLOAT16}, {TypeId::kNumberTypeFloat32, ms_serving::MS_FLOAT32}, | |||
| {TypeId::kNumberTypeFloat64, ms_serving::MS_FLOAT64}, | |||
| }; | |||
| const std::map<ms_serving::DataType, size_t> length_map{ | |||
| {ms_serving::MS_UNKNOWN, 0}, | |||
| {ms_serving::MS_BOOL, sizeof(bool)}, | |||
| {ms_serving::MS_INT8, sizeof(int8_t)}, | |||
| {ms_serving::MS_UINT8, sizeof(uint8_t)}, | |||
| {ms_serving::MS_INT16, sizeof(int16_t)}, | |||
| {ms_serving::MS_UINT16, sizeof(uint16_t)}, | |||
| {ms_serving::MS_INT32, sizeof(int32_t)}, | |||
| {ms_serving::MS_UINT32, sizeof(uint32_t)}, | |||
| {ms_serving::MS_INT64, sizeof(int64_t)}, | |||
| {ms_serving::MS_UINT64, sizeof(uint64_t)}, | |||
| {ms_serving::MS_FLOAT16, 2}, | |||
| {ms_serving::MS_FLOAT32, 4}, | |||
| {ms_serving::MS_FLOAT64, 8}, | |||
| }; | |||
| MSTensorPtr ServingTensor2MSTensor(const ms_serving::Tensor &tensor) { | |||
| std::vector<int> shape; | |||
| for (auto dim : tensor.tensor_shape().dims()) { | |||
| shape.push_back(static_cast<int>(dim)); | |||
| } | |||
| auto iter = type2id_map.find(tensor.tensor_type()); | |||
| if (iter == type2id_map.end()) { | |||
| MS_LOG(ERROR) << "input tensor type is wrong, type is " << tensor.tensor_type(); | |||
| return nullptr; | |||
| } | |||
| TypeId type = iter->second; | |||
| auto ms_tensor = std::shared_ptr<inference::MSTensor>(inference::MSTensor::CreateTensor(type, shape)); | |||
| memcpy_s(ms_tensor->MutableData(), tensor.data().size(), tensor.data().data(), tensor.data().size()); | |||
| return ms_tensor; | |||
| } | |||
| ms_serving::Tensor MSTensor2ServingTensor(MSTensorPtr ms_tensor) { | |||
| ms_serving::Tensor tensor; | |||
| ms_serving::TensorShape shape; | |||
| for (auto dim : ms_tensor->shape()) { | |||
| shape.add_dims(dim); | |||
| } | |||
| *tensor.mutable_tensor_shape() = shape; | |||
| auto iter = id2type_map.find(ms_tensor->data_type()); | |||
| if (iter == id2type_map.end()) { | |||
| MS_LOG(ERROR) << "input tensor type is wrong, type is " << tensor.tensor_type(); | |||
| return tensor; | |||
| } | |||
| tensor.set_tensor_type(iter->second); | |||
| tensor.set_data(ms_tensor->MutableData(), ms_tensor->Size()); | |||
| return tensor; | |||
| } | |||
| void ClearEnv() { | |||
| Session::Instance().Clear(); | |||
| inference::ExitInference(); | |||
| } | |||
| void HandleSignal(int sig) { | |||
| ClearEnv(); | |||
| exit(0); | |||
| } | |||
| #ifdef ENABLE_D | |||
| static rtContext_t g_ctx = nullptr; | |||
| #endif | |||
| } // namespace | |||
| // Service Implement | |||
| class MSServiceImpl final : public MSService::Service { | |||
| grpc::Status Predict(grpc::ServerContext *context, const PredictRequest *request, PredictReply *reply) override { | |||
| std::lock_guard<std::mutex> lock(mutex_); | |||
| #ifdef ENABLE_D | |||
| if (g_ctx == nullptr) { | |||
| MS_LOG(ERROR) << "rtCtx is nullptr"; | |||
| return grpc::Status::CANCELLED; | |||
| } | |||
| rtError_t rt_ret = rtCtxSetCurrent(g_ctx); | |||
| if (rt_ret != RT_ERROR_NONE) { | |||
| MS_LOG(ERROR) << "set Ascend rtCtx failed"; | |||
| } | |||
| #endif | |||
| std::vector<MSTensorPtr> inputs; | |||
| inference::MultiTensor outputs; | |||
| for (int i = 0; i < request->data_size(); i++) { | |||
| auto input = ServingTensor2MSTensor(request->data(i)); | |||
| if (input == nullptr) { | |||
| MS_LOG(ERROR) << "Tensor convert failed"; | |||
| return grpc::Status::CANCELLED; | |||
| } | |||
| inputs.push_back(input); | |||
| } | |||
| auto res = Session::Instance().Predict(inputs, &outputs); | |||
| if (res != SUCCESS) { | |||
| return grpc::Status::CANCELLED; | |||
| } | |||
| for (const auto &tensor : outputs) { | |||
| *reply->add_result() = MSTensor2ServingTensor(tensor); | |||
| } | |||
| MS_LOG(INFO) << "Finish call service Eval"; | |||
| return grpc::Status::OK; | |||
| } | |||
| grpc::Status Test(grpc::ServerContext *context, const PredictRequest *request, PredictReply *reply) override { | |||
| MS_LOG(INFO) << "TestService call"; | |||
| return grpc::Status::OK; | |||
| } | |||
| std::mutex mutex_; | |||
| }; | |||
| Status Server::BuildAndStart() { | |||
| // handle exit signal | |||
| signal(SIGINT, HandleSignal); | |||
| Status res; | |||
| auto option_args = Options::Instance().GetArgs(); | |||
| std::string server_address = "0.0.0.0:" + std::to_string(option_args->grpc_port); | |||
| std::string model_path = option_args->model_path; | |||
| std::string model_name = option_args->model_name; | |||
| std::string device_type = option_args->device_type; | |||
| auto device_id = option_args->device_id; | |||
| res = Session::Instance().CreatDeviceSession(device_type, device_id); | |||
| if (res != SUCCESS) { | |||
| MS_LOG(ERROR) << "creat session failed"; | |||
| ClearEnv(); | |||
| return res; | |||
| } | |||
| VersionController version_controller(option_args->poll_model_wait_seconds, model_path, model_name); | |||
| res = version_controller.Run(); | |||
| if (res != SUCCESS) { | |||
| MS_LOG(ERROR) << "load model failed"; | |||
| ClearEnv(); | |||
| return res; | |||
| } | |||
| #ifdef ENABLE_D | |||
| // set d context | |||
| rtContext_t ctx = nullptr; | |||
| rtError_t rt_ret = rtCtxGetCurrent(&ctx); | |||
| if (rt_ret != RT_ERROR_NONE || ctx == nullptr) { | |||
| MS_LOG(ERROR) << "the ascend device context is null"; | |||
| return FAILED; | |||
| } | |||
| g_ctx = ctx; | |||
| #endif | |||
| MSServiceImpl service; | |||
| grpc::EnableDefaultHealthCheckService(true); | |||
| grpc::reflection::InitProtoReflectionServerBuilderPlugin(); | |||
| // Set the port is not reuseable | |||
| auto option = grpc::MakeChannelArgumentOption(GRPC_ARG_ALLOW_REUSEPORT, 0); | |||
| grpc::ServerBuilder builder; | |||
| builder.SetOption(std::move(option)); | |||
| // Listen on the given address without any authentication mechanism. | |||
| builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); | |||
| // Register "service" as the instance through which we'll communicate with | |||
| // clients. In this case it corresponds to an *synchronous* service. | |||
| builder.RegisterService(&service); | |||
| // Finally assemble the server. | |||
| std::unique_ptr<grpc::Server> server(builder.BuildAndStart()); | |||
| MS_LOG(INFO) << "Server listening on " << server_address << std::endl; | |||
| // Wait for the server to shutdown. Note that some other thread must be | |||
| // responsible for shutting down the server for this call to ever return. | |||
| server->Wait(); | |||
| return SUCCESS; | |||
| } | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,56 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_SERVER_H | |||
| #define MINDSPORE_SERVER_H | |||
| #include <string> | |||
| #include <mutex> | |||
| #include <vector> | |||
| #include <memory> | |||
| #include "util/status.h" | |||
| #include "version_control/model.h" | |||
| #include "include/inference.h" | |||
| #include "mindspore/ccsrc/debug/info.h" | |||
| namespace mindspore { | |||
| namespace serving { | |||
| class Session { | |||
| public: | |||
| static Session &Instance(); | |||
| Status CreatDeviceSession(const std::string &device, uint32_t device_id); | |||
| Status Predict(const std::vector<std::shared_ptr<inference::MSTensor>> &inputs, inference::MultiTensor *output); | |||
| Status Warmup(const MindSporeModelPtr model); | |||
| Status Clear(); | |||
| private: | |||
| Session() = default; | |||
| ~Session() = default; | |||
| int sesseion_id_{0}; | |||
| std::shared_ptr<inference::MSSession> session_{nullptr}; | |||
| FuncGraphPtr last_graph_{nullptr}; | |||
| uint32_t graph_id_{0}; | |||
| std::mutex mutex_; | |||
| std::string device_type_; | |||
| }; | |||
| class Server { | |||
| public: | |||
| Server() = default; | |||
| ~Server() = default; | |||
| Status BuildAndStart(); | |||
| }; | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_SERVER_H | |||
| @@ -0,0 +1,102 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "core/util/file_system_operation.h" | |||
| #include <unistd.h> | |||
| #include <dirent.h> | |||
| #include <sys/types.h> | |||
| #include <sys/stat.h> | |||
| #include <string> | |||
| #include <vector> | |||
| #include <iostream> | |||
| #include <algorithm> | |||
| #include <ctime> | |||
| #include <fstream> | |||
| #include <memory> | |||
| #include "mindspore/ccsrc/utils/log_adapter.h" | |||
| namespace mindspore { | |||
| namespace serving { | |||
| char *ReadFile(const char *file, size_t *size) { | |||
| if (file == nullptr) { | |||
| MS_LOG(ERROR) << "file is nullptr"; | |||
| return nullptr; | |||
| } | |||
| MS_ASSERT(size != nullptr); | |||
| std::string realPath = file; | |||
| std::ifstream ifs(realPath); | |||
| if (!ifs.good()) { | |||
| MS_LOG(ERROR) << "file: " << realPath << " is not exist"; | |||
| return nullptr; | |||
| } | |||
| if (!ifs.is_open()) { | |||
| MS_LOG(ERROR) << "file: " << realPath << "open failed"; | |||
| return nullptr; | |||
| } | |||
| ifs.seekg(0, std::ios::end); | |||
| *size = ifs.tellg(); | |||
| std::unique_ptr<char> buf(new (std::nothrow) char[*size]); | |||
| if (buf == nullptr) { | |||
| MS_LOG(ERROR) << "malloc buf failed, file: " << realPath; | |||
| ifs.close(); | |||
| return nullptr; | |||
| } | |||
| ifs.seekg(0, std::ios::beg); | |||
| ifs.read(buf.get(), *size); | |||
| ifs.close(); | |||
| return buf.release(); | |||
| } | |||
| bool DirOrFileExist(const std::string &file_path) { | |||
| int ret = access(file_path.c_str(), 0); | |||
| return (ret == -1) ? false : true; | |||
| } | |||
| std::vector<std::string> GetAllSubDirs(const std::string &dir_path) { | |||
| DIR *dir; | |||
| struct dirent *ptr; | |||
| std::vector<std::string> SubDirs; | |||
| if ((dir = opendir(dir_path.c_str())) == NULL) { | |||
| MS_LOG(ERROR) << "Open " << dir_path << " error!"; | |||
| return std::vector<std::string>(); | |||
| } | |||
| while ((ptr = readdir(dir)) != NULL) { | |||
| std::string name = ptr->d_name; | |||
| if (name == "." || name == "..") { | |||
| continue; | |||
| } | |||
| if (ptr->d_type == DT_DIR) { | |||
| SubDirs.push_back(dir_path + "/" + name); | |||
| } | |||
| } | |||
| closedir(dir); | |||
| std::sort(SubDirs.begin(), SubDirs.end()); | |||
| return SubDirs; | |||
| } | |||
| time_t GetModifyTime(const std::string &file_path) { | |||
| struct stat info; | |||
| (void)stat(file_path.c_str(), &info); | |||
| return info.st_mtime; | |||
| } | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_SERVING_FILE_SYSTEM_OPERATION_H_ | |||
| #define MINDSPORE_SERVING_FILE_SYSTEM_OPERATION_H_ | |||
| #include <string> | |||
| #include <vector> | |||
| #include <ctime> | |||
| namespace mindspore { | |||
| namespace serving { | |||
| char *ReadFile(const char *file, size_t *size); | |||
| bool DirOrFileExist(const std::string &file_path); | |||
| std::vector<std::string> GetAllSubDirs(const std::string &dir_path); | |||
| time_t GetModifyTime(const std::string &file_path); | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| #endif // !MINDSPORE_SERVING_FILE_SYSTEM_OPERATION_H_ | |||
| @@ -0,0 +1,243 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "core/util/option_parser.h" | |||
| #include <vector> | |||
| #include <string> | |||
| #include <cstring> | |||
| #include <iostream> | |||
| #include <iomanip> | |||
| #include "mindspore/ccsrc/utils/log_adapter.h" | |||
| namespace mindspore { | |||
| namespace serving { | |||
| bool StartWith(const std::string &str, const std::string &expected) { | |||
| return expected.empty() || | |||
| (str.size() >= expected.size() && memcmp(str.data(), expected.data(), expected.size()) == 0); | |||
| } | |||
| bool RemovePrefix(std::string *str, const std::string &prefix) { | |||
| if (!StartWith(*str, prefix)) return false; | |||
| str->replace(str->begin(), str->begin() + prefix.size(), ""); | |||
| return true; | |||
| } | |||
| bool Option::ParseInt32(std::string *arg) { | |||
| if (RemovePrefix(arg, "--") && RemovePrefix(arg, name_) && RemovePrefix(arg, "=")) { | |||
| char extra; | |||
| int32_t parsed_value; | |||
| if (sscanf(arg->data(), "%d%c", &parsed_value, &extra) != 1) { | |||
| std::cout << "Parse " << name_ << "Error for option " << *arg << std::endl; | |||
| return false; | |||
| } else { | |||
| *int32_default_ = parsed_value; | |||
| } | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| bool Option::ParseBool(std::string *arg) { | |||
| if (RemovePrefix(arg, "--") && RemovePrefix(arg, name_) && RemovePrefix(arg, "=")) { | |||
| if (*arg == "true") { | |||
| *bool_default_ = true; | |||
| } else if (*arg == "false") { | |||
| *bool_default_ = false; | |||
| } else { | |||
| std::cout << "Parse " << name_ << " Error for option " << *arg << std::endl; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| bool Option::ParseString(std::string *arg) { | |||
| if (RemovePrefix(arg, "--") && RemovePrefix(arg, name_) && RemovePrefix(arg, "=")) { | |||
| *string_default_ = *arg; | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| bool Option::ParseFloat(std::string *arg) { | |||
| if (RemovePrefix(arg, "--") && RemovePrefix(arg, name_) && RemovePrefix(arg, "=")) { | |||
| char extra; | |||
| float parsed_value; | |||
| if (sscanf(arg->data(), "%f%c", &parsed_value, &extra) != 1) { | |||
| std::cout << "Parse " << name_ << "Error for option " << *arg << std::endl; | |||
| return false; | |||
| } else { | |||
| *float_default_ = parsed_value; | |||
| } | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| Option::Option(const std::string &name, int32_t *default_point, const std::string &usage) | |||
| : name_(name), | |||
| type_(MS_TYPE_INT32), | |||
| int32_default_(default_point), | |||
| bool_default_(nullptr), | |||
| string_default_(nullptr), | |||
| float_default_(nullptr), | |||
| usage_(usage) {} | |||
| Option::Option(const std::string &name, bool *default_point, const std::string &usage) | |||
| : name_(name), | |||
| type_(MS_TYPE_BOOL), | |||
| int32_default_(nullptr), | |||
| bool_default_(default_point), | |||
| string_default_(nullptr), | |||
| float_default_(nullptr), | |||
| usage_(usage) {} | |||
| Option::Option(const std::string &name, std::string *default_point, const std::string &usage) | |||
| : name_(name), | |||
| type_(MS_TYPE_STRING), | |||
| int32_default_(nullptr), | |||
| bool_default_(nullptr), | |||
| string_default_(default_point), | |||
| float_default_(nullptr), | |||
| usage_(usage) {} | |||
| Option::Option(const std::string &name, float *default_point, const std::string &usage) | |||
| : name_(name), | |||
| type_(MS_TYPE_FLOAT), | |||
| int32_default_(nullptr), | |||
| bool_default_(nullptr), | |||
| string_default_(nullptr), | |||
| float_default_(default_point), | |||
| usage_(usage) {} | |||
| bool Option::Parse(std::string *arg) { | |||
| bool result = false; | |||
| switch (type_) { | |||
| case MS_TYPE_BOOL: | |||
| result = ParseBool(arg); | |||
| break; | |||
| case MS_TYPE_FLOAT: | |||
| result = ParseFloat(arg); | |||
| break; | |||
| case MS_TYPE_INT32: | |||
| result = ParseInt32(arg); | |||
| break; | |||
| case MS_TYPE_STRING: | |||
| result = ParseString(arg); | |||
| break; | |||
| default: | |||
| break; | |||
| } | |||
| return result; | |||
| } | |||
| std::shared_ptr<Options> Options::inst_ = nullptr; | |||
| Options &Options::Instance() { | |||
| static Options instance; | |||
| return instance; | |||
| } | |||
| Options::Options() : args_(nullptr) { CreateOptions(); } | |||
| void Options::CreateOptions() { | |||
| args_ = std::make_shared<Arguments>(); | |||
| std::vector<Option> options = { | |||
| Option("port", &args_->grpc_port, "Port to listen on for gRPC API, default is 5500"), | |||
| Option("model_name", &args_->model_name, "model name "), | |||
| Option("model_path", &args_->model_path, "the path of the model files"), | |||
| Option("device_id", &args_->device_id, "the device id, default is 0"), | |||
| }; | |||
| options_ = options; | |||
| } | |||
| bool Options::CheckOptions() { | |||
| if (args_->model_name == "" || args_->model_path == "") { | |||
| std::cout << "model_path and model_name should not be null" << std::endl; | |||
| return false; | |||
| } | |||
| if (args_->device_type != "Ascend") { | |||
| std::cout << "device_type only support Ascend right now" << std::endl; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| bool Options::ParseCommandLine(int argc, char **argv) { | |||
| if (argc < 2 || (strcmp(argv[1], "--help") == 0)) { | |||
| Usage(); | |||
| return false; | |||
| } | |||
| std::vector<std::string> unkown_options; | |||
| for (int i = 1; i < argc; ++i) { | |||
| bool found = false; | |||
| for (auto &option : options_) { | |||
| std::string arg = argv[i]; | |||
| if (option.Parse(&arg)) { | |||
| found = true; | |||
| break; | |||
| } | |||
| } | |||
| if (found == false) { | |||
| unkown_options.push_back(argv[i]); | |||
| } | |||
| } | |||
| if (!unkown_options.empty()) { | |||
| std::cout << "unkown options:" << std::endl; | |||
| for (const auto &option : unkown_options) { | |||
| std::cout << option << std::endl; | |||
| } | |||
| } | |||
| bool valid = (unkown_options.empty() && CheckOptions()); | |||
| if (!valid) { | |||
| Usage(); | |||
| } | |||
| return valid; | |||
| } | |||
| void Options::Usage() { | |||
| std::cout << "USAGE: mindspore-serving [options]" << std::endl; | |||
| for (const auto &option : options_) { | |||
| std::string type; | |||
| switch (option.type_) { | |||
| case Option::MS_TYPE_BOOL: | |||
| type = "bool"; | |||
| break; | |||
| case Option::MS_TYPE_FLOAT: | |||
| type = "float"; | |||
| break; | |||
| case Option::MS_TYPE_INT32: | |||
| type = "int32"; | |||
| break; | |||
| case Option::MS_TYPE_STRING: | |||
| type = "string"; | |||
| break; | |||
| default: | |||
| break; | |||
| } | |||
| std::cout << "--" << std::setw(30) << std::left << option.name_ << std::setw(10) << std::left << type | |||
| << option.usage_ << std::endl; | |||
| } | |||
| } | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,84 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_SERVING_OPTION_PARSER_H_ | |||
| #define MINDSPORE_SERVING_OPTION_PARSER_H_ | |||
| #include <string> | |||
| #include <vector> | |||
| #include <memory> | |||
| namespace mindspore { | |||
| namespace serving { | |||
| struct Arguments { | |||
| int32_t grpc_port = 5500; | |||
| std::string grpc_socket_path; | |||
| std::string ssl_config_file; | |||
| int32_t poll_model_wait_seconds = 1; | |||
| std::string model_name; | |||
| std::string model_path; | |||
| std::string device_type = "Ascend"; | |||
| int32_t device_id = 0; | |||
| }; | |||
| class Option { | |||
| public: | |||
| Option(const std::string &name, int32_t *default_point, const std::string &usage); | |||
| Option(const std::string &name, bool *default_point, const std::string &usage); | |||
| Option(const std::string &name, std::string *default_point, const std::string &usage); | |||
| Option(const std::string &name, float *default_point, const std::string &usage); | |||
| private: | |||
| friend class Options; | |||
| bool ParseInt32(std::string *arg); | |||
| bool ParseBool(std::string *arg); | |||
| bool ParseString(std::string *arg); | |||
| bool ParseFloat(std::string *arg); | |||
| bool Parse(std::string *arg); | |||
| std::string name_; | |||
| enum { MS_TYPE_INT32, MS_TYPE_BOOL, MS_TYPE_STRING, MS_TYPE_FLOAT } type_; | |||
| int32_t *int32_default_; | |||
| bool *bool_default_; | |||
| std::string *string_default_; | |||
| float *float_default_; | |||
| std::string usage_; | |||
| }; | |||
| class Options { | |||
| public: | |||
| ~Options() = default; | |||
| Options(const Options &) = delete; | |||
| Options &operator=(const Options &) = delete; | |||
| static Options &Instance(); | |||
| bool ParseCommandLine(int argc, char **argv); | |||
| void Usage(); | |||
| std::shared_ptr<Arguments> GetArgs() { return args_; } | |||
| private: | |||
| Options(); | |||
| void CreateOptions(); | |||
| bool CheckOptions(); | |||
| static std::shared_ptr<Options> inst_; | |||
| std::string usage_; | |||
| std::vector<Option> options_; | |||
| std::shared_ptr<Arguments> args_; | |||
| }; | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| #endif | |||
| @@ -0,0 +1,25 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_STATUS_H | |||
| #define MINDSPORE_STATUS_H | |||
| namespace mindspore { | |||
| namespace serving { | |||
| using Status = uint32_t; | |||
| enum ServingStatus { SUCCESS = 0, FAILED }; | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_STATUS_H | |||
| @@ -0,0 +1,33 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "core/version_control/model.h" | |||
| #include <string> | |||
| #include "mindspore/ccsrc/utils/log_adapter.h" | |||
| namespace mindspore { | |||
| namespace serving { | |||
| MindSporeModel::MindSporeModel(const std::string &model_name, const std::string &model_path, | |||
| const std::string &model_version, const time_t &last_update_time) | |||
| : model_name_(model_name), | |||
| model_path_(model_path), | |||
| model_version_(model_version), | |||
| last_update_time_(last_update_time) { | |||
| MS_LOG(INFO) << "init mindspore model, model_name = " << model_name_ << ", model_path = " << model_path_ | |||
| << ", model_version = " << model_version_ << ", last_update_time = " << last_update_time_; | |||
| } | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,47 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_SERVING_MODEL_H_ | |||
| #define MINDSPORE_SERVING_MODEL_H_ | |||
| #include <string> | |||
| #include <ctime> | |||
| #include <memory> | |||
| namespace mindspore { | |||
| namespace serving { | |||
| class MindSporeModel { | |||
| public: | |||
| MindSporeModel(const std::string &model_name, const std::string &model_path, const std::string &model_version, | |||
| const time_t &last_update_time); | |||
| ~MindSporeModel() = default; | |||
| std::string GetModelName() { return model_name_; } | |||
| std::string GetModelPath() { return model_path_; } | |||
| std::string GetModelVersion() { return model_version_; } | |||
| time_t GetLastUpdateTime() { return last_update_time_; } | |||
| void SetLastUpdateTime(const time_t &last_update_time) { last_update_time_ = last_update_time; } | |||
| private: | |||
| std::string model_name_; | |||
| std::string model_path_; | |||
| std::string model_version_; | |||
| time_t last_update_time_; | |||
| }; | |||
| using MindSporeModelPtr = std::shared_ptr<MindSporeModel>; | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| #endif // !MINDSPORE_SERVING_MODEL_H_ | |||
| @@ -0,0 +1,134 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "core/version_control/version_controller.h" | |||
| #include <string> | |||
| #include <iostream> | |||
| #include <ctime> | |||
| #include <memory> | |||
| #include "util/file_system_operation.h" | |||
| #include "mindspore/ccsrc/utils/log_adapter.h" | |||
| #include "core/server.h" | |||
| namespace mindspore { | |||
| namespace serving { | |||
| volatile bool stop_poll = false; | |||
| std::string GetVersionFromPath(const std::string &path) { | |||
| std::string new_path = path; | |||
| if (path.back() == '/') { | |||
| new_path = path.substr(0, path.size() - 1); | |||
| } | |||
| std::string::size_type index = new_path.find_last_of("/"); | |||
| std::string version = new_path.substr(index + 1); | |||
| return version; | |||
| } | |||
| void PeriodicFunction::operator()() { | |||
| while (true) { | |||
| std::this_thread::sleep_for(std::chrono::milliseconds(poll_model_wait_seconds_ * 1000)); | |||
| std::vector<std::string> SubDirs = GetAllSubDirs(models_path_); | |||
| if (version_control_strategy_ == VersionController::VersionControllerStrategy::kLastest) { | |||
| auto path = SubDirs.empty() ? models_path_ : SubDirs.back(); | |||
| std::string model_version = GetVersionFromPath(path); | |||
| time_t last_update_time = GetModifyTime(path); | |||
| if (model_version != valid_models_.back()->GetModelVersion()) { | |||
| MindSporeModelPtr model_ptr = std::make_shared<MindSporeModel>(valid_models_.front()->GetModelName(), path, | |||
| model_version, last_update_time); | |||
| valid_models_.back() = model_ptr; | |||
| Session::Instance().Warmup(valid_models_.back()); | |||
| } else { | |||
| if (difftime(valid_models_.back()->GetLastUpdateTime(), last_update_time) < 0) { | |||
| valid_models_.back()->SetLastUpdateTime(last_update_time); | |||
| } | |||
| } | |||
| } else { | |||
| // not support | |||
| } | |||
| if (stop_poll == true) { | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| VersionController::VersionController(int32_t poll_model_wait_seconds, const std::string &models_path, | |||
| const std::string &model_name) | |||
| : version_control_strategy_(kLastest), | |||
| poll_model_wait_seconds_(poll_model_wait_seconds), | |||
| models_path_(models_path), | |||
| model_name_(model_name) {} | |||
| void StopPollModelPeriodic() { stop_poll = true; } | |||
| VersionController::~VersionController() { | |||
| StopPollModelPeriodic(); | |||
| if (poll_model_thread_.joinable()) { | |||
| poll_model_thread_.join(); | |||
| } | |||
| } | |||
| Status VersionController::Run() { | |||
| Status ret; | |||
| ret = CreateInitModels(); | |||
| if (ret != SUCCESS) { | |||
| return ret; | |||
| } | |||
| // disable periodic check | |||
| // StartPollModelPeriodic(); | |||
| return SUCCESS; | |||
| } | |||
| Status VersionController::CreateInitModels() { | |||
| if (!DirOrFileExist(models_path_)) { | |||
| MS_LOG(ERROR) << "Model Path Not Exist!" << std::endl; | |||
| return FAILED; | |||
| } | |||
| std::vector<std::string> SubDirs = GetAllSubDirs(models_path_); | |||
| if (version_control_strategy_ == kLastest) { | |||
| auto path = SubDirs.empty() ? models_path_ : SubDirs.back(); | |||
| std::string model_version = GetVersionFromPath(path); | |||
| time_t last_update_time = GetModifyTime(path); | |||
| MindSporeModelPtr model_ptr = std::make_shared<MindSporeModel>(model_name_, path, model_version, last_update_time); | |||
| valid_models_.emplace_back(model_ptr); | |||
| } else { | |||
| for (auto &dir : SubDirs) { | |||
| std::string model_version = GetVersionFromPath(dir); | |||
| time_t last_update_time = GetModifyTime(dir); | |||
| MindSporeModelPtr model_ptr = std::make_shared<MindSporeModel>(model_name_, dir, model_version, last_update_time); | |||
| valid_models_.emplace_back(model_ptr); | |||
| } | |||
| } | |||
| if (valid_models_.empty()) { | |||
| MS_LOG(ERROR) << "There is no valid model for serving"; | |||
| return FAILED; | |||
| } | |||
| Session::Instance().Warmup(valid_models_.back()); | |||
| return SUCCESS; | |||
| } | |||
| void VersionController::StartPollModelPeriodic() { | |||
| poll_model_thread_ = std::thread( | |||
| PeriodicFunction(poll_model_wait_seconds_, models_path_, version_control_strategy_, std::ref(valid_models_))); | |||
| } | |||
| void VersionController::StopPollModelPeriodic() {} | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,71 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_SERVING_VERSOIN_CONTROLLER_H_ | |||
| #define MINDSPORE_SERVING_VERSOIN_CONTROLLER_H_ | |||
| #include <string> | |||
| #include <vector> | |||
| #include <thread> | |||
| #include "./model.h" | |||
| #include "util/status.h" | |||
| namespace mindspore { | |||
| namespace serving { | |||
| class VersionController { | |||
| public: | |||
| enum VersionControllerStrategy { kLastest = 0, kMulti = 1 }; | |||
| VersionController(int32_t poll_model_wait_seconds, const std::string &models_path, const std::string &model_name); | |||
| ~VersionController(); | |||
| Status Run(); | |||
| void StartPollModelPeriodic(); | |||
| void StopPollModelPeriodic(); | |||
| private: | |||
| Status CreateInitModels(); | |||
| private: | |||
| VersionControllerStrategy version_control_strategy_; | |||
| std::vector<MindSporeModelPtr> valid_models_; | |||
| int32_t poll_model_wait_seconds_; | |||
| std::thread poll_model_thread_; | |||
| std::string models_path_; | |||
| std::string model_name_; | |||
| }; | |||
| class PeriodicFunction { | |||
| public: | |||
| PeriodicFunction(int32_t poll_model_wait_seconds, const std::string &models_path, | |||
| VersionController::VersionControllerStrategy version_control_strategy, | |||
| const std::vector<MindSporeModelPtr> &valid_models) | |||
| : poll_model_wait_seconds_(poll_model_wait_seconds), | |||
| models_path_(models_path), | |||
| version_control_strategy_(version_control_strategy), | |||
| valid_models_(valid_models) {} | |||
| ~PeriodicFunction() = default; | |||
| void operator()(); | |||
| private: | |||
| int32_t poll_model_wait_seconds_; | |||
| std::string models_path_; | |||
| VersionController::VersionControllerStrategy version_control_strategy_; | |||
| std::vector<MindSporeModelPtr> valid_models_; | |||
| }; | |||
| } // namespace serving | |||
| } // namespace mindspore | |||
| #endif // !MINDSPORE_SERVING_VERSOIN_CONTROLLER_H_ | |||
| @@ -0,0 +1,72 @@ | |||
| cmake_minimum_required(VERSION 3.5.1) | |||
| project(HelloWorld C CXX) | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") | |||
| find_package(Threads REQUIRED) | |||
| # This branch assumes that gRPC and all its dependencies are already installed | |||
| # on this system, so they can be located by find_package(). | |||
| # Find Protobuf installation | |||
| # Looks for protobuf-config.cmake file installed by Protobuf's cmake installation. | |||
| set(protobuf_MODULE_COMPATIBLE TRUE) | |||
| find_package(Protobuf CONFIG REQUIRED) | |||
| message(STATUS "Using protobuf ${protobuf_VERSION}") | |||
| set(_PROTOBUF_LIBPROTOBUF protobuf::libprotobuf) | |||
| set(_REFLECTION gRPC::grpc++_reflection) | |||
| if(CMAKE_CROSSCOMPILING) | |||
| find_program(_PROTOBUF_PROTOC protoc) | |||
| else() | |||
| set(_PROTOBUF_PROTOC $<TARGET_FILE:protobuf::protoc>) | |||
| endif() | |||
| # Find gRPC installation | |||
| # Looks for gRPCConfig.cmake file installed by gRPC's cmake installation. | |||
| find_package(gRPC CONFIG REQUIRED) | |||
| message(STATUS "Using gRPC ${gRPC_VERSION}") | |||
| set(_GRPC_GRPCPP gRPC::grpc++) | |||
| if(CMAKE_CROSSCOMPILING) | |||
| find_program(_GRPC_CPP_PLUGIN_EXECUTABLE grpc_cpp_plugin) | |||
| else() | |||
| set(_GRPC_CPP_PLUGIN_EXECUTABLE $<TARGET_FILE:gRPC::grpc_cpp_plugin>) | |||
| endif() | |||
| # Proto file | |||
| get_filename_component(hw_proto "../ms_service.proto" ABSOLUTE) | |||
| get_filename_component(hw_proto_path "${hw_proto}" PATH) | |||
| # Generated sources | |||
| set(hw_proto_srcs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.pb.cc") | |||
| set(hw_proto_hdrs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.pb.h") | |||
| set(hw_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.grpc.pb.cc") | |||
| set(hw_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/ms_service.grpc.pb.h") | |||
| add_custom_command( | |||
| OUTPUT "${hw_proto_srcs}" "${hw_proto_hdrs}" "${hw_grpc_srcs}" "${hw_grpc_hdrs}" | |||
| COMMAND ${_PROTOBUF_PROTOC} | |||
| ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}" | |||
| --cpp_out "${CMAKE_CURRENT_BINARY_DIR}" | |||
| -I "${hw_proto_path}" | |||
| --plugin=protoc-gen-grpc="${_GRPC_CPP_PLUGIN_EXECUTABLE}" | |||
| "${hw_proto}" | |||
| DEPENDS "${hw_proto}") | |||
| # Include generated *.pb.h files | |||
| include_directories("${CMAKE_CURRENT_BINARY_DIR}") | |||
| # Targets greeter_[async_](client|server) | |||
| foreach(_target | |||
| ms_client ms_server) | |||
| add_executable(${_target} "${_target}.cc" | |||
| ${hw_proto_srcs} | |||
| ${hw_grpc_srcs}) | |||
| target_link_libraries(${_target} | |||
| ${_REFLECTION} | |||
| ${_GRPC_GRPCPP} | |||
| ${_PROTOBUF_LIBPROTOBUF}) | |||
| endforeach() | |||
| @@ -0,0 +1,105 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <grpcpp/grpcpp.h> | |||
| #include <iostream> | |||
| #include "serving/ms_service.grpc.pb.h" | |||
| using grpc::Channel; | |||
| using grpc::ClientContext; | |||
| using grpc::Status; | |||
| using ms_serving::MSService; | |||
| using ms_serving::PredictReply; | |||
| using ms_serving::PredictRequest; | |||
| using ms_serving::Tensor; | |||
| using ms_serving::TensorShape; | |||
| class MSClient { | |||
| public: | |||
| explicit MSClient(std::shared_ptr<Channel> channel) : stub_(MSService::NewStub(channel)) {} | |||
| std::string Predict(const std::string &user) { | |||
| // Data we are sending to the server. | |||
| PredictRequest request; | |||
| Tensor data; | |||
| TensorShape shape; | |||
| shape.add_dims(1); | |||
| shape.add_dims(1); | |||
| shape.add_dims(2); | |||
| shape.add_dims(2); | |||
| *data.mutable_tensor_shape() = shape; | |||
| data.set_tensor_type(ms_serving::MS_FLOAT32); | |||
| vector<float> input_data{1.1, 2.1, 3.1, 4.1}; | |||
| data.set_data(input_data.data(), input_data.size()); | |||
| *request.add_data() = data; | |||
| *request.add_data() = data; | |||
| // Container for the data we expect from the server. | |||
| PredictReply reply; | |||
| // Context for the client. It could be used to convey extra information to | |||
| // the server and/or tweak certain RPC behaviors. | |||
| ClientContext context; | |||
| // The actual RPC. | |||
| Status status = stub_->Predict(&context, request, &reply); | |||
| // Act upon its status. | |||
| if (status.ok()) { | |||
| return "RPC OK"; | |||
| } else { | |||
| std::cout << status.error_code() << ": " << status.error_message() << std::endl; | |||
| return "RPC failed"; | |||
| } | |||
| } | |||
| private: | |||
| std::unique_ptr<MSService::Stub> stub_; | |||
| }; | |||
| int main(int argc, char **argv) { | |||
| // Instantiate the client. It requires a channel, out of which the actual RPCs | |||
| // are created. This channel models a connection to an endpoint specified by | |||
| // the argument "--target=" which is the only expected argument. | |||
| // We indicate that the channel isn't authenticated (use of | |||
| // InsecureChannelCredentials()). | |||
| std::string target_str; | |||
| std::string arg_str("--target"); | |||
| if (argc > 1) { | |||
| std::string arg_val = argv[1]; | |||
| size_t start_pos = arg_val.find(arg_str); | |||
| if (start_pos != std::string::npos) { | |||
| start_pos += arg_str.size(); | |||
| if (arg_val[start_pos] == '=') { | |||
| target_str = arg_val.substr(start_pos + 1); | |||
| } else { | |||
| std::cout << "The only correct argument syntax is --target=" << std::endl; | |||
| return 0; | |||
| } | |||
| } else { | |||
| std::cout << "The only acceptable argument is --target=" << std::endl; | |||
| return 0; | |||
| } | |||
| } else { | |||
| target_str = "localhost:85010"; | |||
| } | |||
| MSClient client(grpc::CreateChannel(target_str, grpc::InsecureChannelCredentials())); | |||
| string request; | |||
| string reply = client.Predict(request); | |||
| std::cout << "client received: " << reply << std::endl; | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,67 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <grpcpp/grpcpp.h> | |||
| #include <grpcpp/health_check_service_interface.h> | |||
| #include <grpcpp/ext/proto_server_reflection_plugin.h> | |||
| #include <iostream> | |||
| #include "serving/ms_service.grpc.pb.h" | |||
| using grpc::Server; | |||
| using grpc::ServerBuilder; | |||
| using grpc::ServerContext; | |||
| using grpc::Status; | |||
| using ms_serving::MSService; | |||
| using ms_serving::PredictReply; | |||
| using ms_serving::PredictRequest; | |||
| // Logic and data behind the server's behavior. | |||
| class MSServiceImpl final : public MSService::Service { | |||
| Status Predict(ServerContext *context, const PredictRequest *request, PredictReply *reply) override { | |||
| cout << "server eval" << endl; | |||
| return Status::OK; | |||
| } | |||
| }; | |||
| void RunServer() { | |||
| std::string server_address("0.0.0.0:50051"); | |||
| MSServiceImpl service; | |||
| grpc::EnableDefaultHealthCheckService(true); | |||
| grpc::reflection::InitProtoReflectionServerBuilderPlugin(); | |||
| auto option = grpc::MakeChannelArgumentOption(GRPC_ARG_ALLOW_REUSEPORT, 0); | |||
| ServerBuilder builder; | |||
| builder.SetOption(std::move(option)); | |||
| // Listen on the given address without any authentication mechanism. | |||
| builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); | |||
| // Register "service" as the instance through which we'll communicate with | |||
| // clients. In this case it corresponds to an *synchronous* service. | |||
| builder.RegisterService(&service); | |||
| // Finally assemble the server. | |||
| std::unique_ptr<Server> server(builder.BuildAndStart()); | |||
| std::cout << "Server listening on " << server_address << std::endl; | |||
| // Wait for the server to shutdown. Note that some other thread must be | |||
| // responsible for shutting down the server for this call to ever return. | |||
| server->Wait(); | |||
| } | |||
| int main(int argc, char **argv) { | |||
| RunServer(); | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,29 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "core/server.h" | |||
| #include "core/util/option_parser.h" | |||
| using mindspore::serving::Options; | |||
| int main(int argc, char **argv) { | |||
| auto flag = Options::Instance().ParseCommandLine(argc, argv); | |||
| if (!flag) { | |||
| return 0; | |||
| } | |||
| mindspore::serving::Server server; | |||
| server.BuildAndStart(); | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,48 @@ | |||
| // ms_service.proto | |||
| syntax = "proto3"; | |||
| package ms_serving; | |||
| service MSService { | |||
| rpc Predict(PredictRequest) returns (PredictReply) {} | |||
| rpc Test(PredictRequest) returns (PredictReply) {} | |||
| } | |||
| message PredictRequest { | |||
| repeated Tensor data = 1; | |||
| } | |||
| message PredictReply { | |||
| repeated Tensor result = 1; | |||
| } | |||
| enum DataType { | |||
| MS_UNKNOWN = 0; | |||
| MS_BOOL = 1; | |||
| MS_INT8 = 2; | |||
| MS_UINT8 = 3; | |||
| MS_INT16 = 4; | |||
| MS_UINT16 = 5; | |||
| MS_INT32 = 6; | |||
| MS_UINT32 = 7; | |||
| MS_INT64 = 8; | |||
| MS_UINT64 = 9; | |||
| MS_FLOAT16 = 10; | |||
| MS_FLOAT32 = 11; | |||
| MS_FLOAT64 = 12; | |||
| } | |||
| message TensorShape { | |||
| repeated int64 dims = 1; | |||
| }; | |||
| message Tensor { | |||
| // tensor shape info | |||
| TensorShape tensor_shape = 1; | |||
| // tensor content data type | |||
| DataType tensor_type = 2; | |||
| // tensor data | |||
| bytes data = 3; | |||
| } | |||
| @@ -0,0 +1,57 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import grpc | |||
| import numpy as np | |||
| import ms_service_pb2 | |||
| import ms_service_pb2_grpc | |||
| def run(): | |||
| channel = grpc.insecure_channel('localhost:50051') | |||
| stub = ms_service_pb2_grpc.MSServiceStub(channel) | |||
| # request = ms_service_pb2.PredictRequest() | |||
| # request.name = 'haha' | |||
| # response = stub.Eval(request) | |||
| # print("ms client received: " + response.message) | |||
| request = ms_service_pb2.PredictRequest() | |||
| request.data.tensor_shape.dims.extend([32, 1, 32, 32]) | |||
| request.data.tensor_type = ms_service_pb2.MS_FLOAT32 | |||
| request.data.data = (np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01).tobytes() | |||
| request.label.tensor_shape.dims.extend([32]) | |||
| request.label.tensor_type = ms_service_pb2.MS_INT32 | |||
| request.label.data = np.ones([32]).astype(np.int32).tobytes() | |||
| result = stub.Predict(request) | |||
| #result_np = np.frombuffer(result.result.data, dtype=np.float32).reshape(result.result.tensor_shape.dims) | |||
| print("ms client received: ") | |||
| #print(result_np) | |||
| # future_list = [] | |||
| # times = 1000 | |||
| # for i in range(times): | |||
| # async_future = stub.Eval.future(request) | |||
| # future_list.append(async_future) | |||
| # print("async call, future list add item " + str(i)); | |||
| # | |||
| # for i in range(len(future_list)): | |||
| # async_result = future_list[i].result() | |||
| # print("ms client async get result of item " + str(i)) | |||
| if __name__ == '__main__': | |||
| run() | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import grpc | |||
| import numpy as np | |||
| import ms_service_pb2 | |||
| import ms_service_pb2_grpc | |||
| def run(): | |||
| channel = grpc.insecure_channel('localhost:50051') | |||
| stub = ms_service_pb2_grpc.MSServiceStub(channel) | |||
| # request = ms_service_pb2.EvalRequest() | |||
| # request.name = 'haha' | |||
| # response = stub.Eval(request) | |||
| # print("ms client received: " + response.message) | |||
| request = ms_service_pb2.PredictRequest() | |||
| request.data.tensor_shape.dims.extend([32, 1, 32, 32]) | |||
| request.data.tensor_type = ms_service_pb2.MS_FLOAT32 | |||
| request.data.data = (np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01).tobytes() | |||
| request.label.tensor_shape.dims.extend([32]) | |||
| request.label.tensor_type = ms_service_pb2.MS_INT32 | |||
| request.label.data = np.ones([32]).astype(np.int32).tobytes() | |||
| result = stub.Test(request) | |||
| #result_np = np.frombuffer(result.result.data, dtype=np.float32).reshape(result.result.tensor_shape.dims) | |||
| print("ms client test call received: ") | |||
| #print(result_np) | |||
| if __name__ == '__main__': | |||
| run() | |||
| @@ -0,0 +1,55 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from concurrent import futures | |||
| import time | |||
| import grpc | |||
| import numpy as np | |||
| import ms_service_pb2 | |||
| import ms_service_pb2_grpc | |||
| import test_cpu_lenet | |||
| from mindspore import Tensor | |||
| class MSService(ms_service_pb2_grpc.MSServiceServicer): | |||
| def Predict(self, request, context): | |||
| request_data = request.data | |||
| request_label = request.label | |||
| data_from_buffer = np.frombuffer(request_data.data, dtype=np.float32) | |||
| data_from_buffer = data_from_buffer.reshape(request_data.tensor_shape.dims) | |||
| data = Tensor(data_from_buffer) | |||
| label_from_buffer = np.frombuffer(request_label.data, dtype=np.int32) | |||
| label_from_buffer = label_from_buffer.reshape(request_label.tensor_shape.dims) | |||
| label = Tensor(label_from_buffer) | |||
| result = test_cpu_lenet.test_lenet(data, label) | |||
| result_reply = ms_service_pb2.PredictReply() | |||
| result_reply.result.tensor_shape.dims.extend(result.shape()) | |||
| result_reply.result.data = result.asnumpy().tobytes() | |||
| return result_reply | |||
| def serve(): | |||
| server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) | |||
| ms_service_pb2_grpc.add_MSServiceServicer_to_server(MSService(), server) | |||
| server.add_insecure_port('[::]:50051') | |||
| server.start() | |||
| try: | |||
| while True: | |||
| time.sleep(60*60*24) # one day in seconds | |||
| except KeyboardInterrupt: | |||
| server.stop(0) | |||
| if __name__ == '__main__': | |||
| serve() | |||
| @@ -0,0 +1,96 @@ | |||
| # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! | |||
| import grpc | |||
| import ms_service_pb2 as ms__service__pb2 | |||
| class MSServiceStub(object): | |||
| """Missing associated documentation comment in .proto file""" | |||
| def __init__(self, channel): | |||
| """Constructor. | |||
| Args: | |||
| channel: A grpc.Channel. | |||
| """ | |||
| self.Predict = channel.unary_unary( | |||
| '/ms_serving.MSService/Predict', | |||
| request_serializer=ms__service__pb2.PredictRequest.SerializeToString, | |||
| response_deserializer=ms__service__pb2.PredictReply.FromString, | |||
| ) | |||
| self.Test = channel.unary_unary( | |||
| '/ms_serving.MSService/Test', | |||
| request_serializer=ms__service__pb2.PredictRequest.SerializeToString, | |||
| response_deserializer=ms__service__pb2.PredictReply.FromString, | |||
| ) | |||
| class MSServiceServicer(object): | |||
| """Missing associated documentation comment in .proto file""" | |||
| def Predict(self, request, context): | |||
| """Missing associated documentation comment in .proto file""" | |||
| context.set_code(grpc.StatusCode.UNIMPLEMENTED) | |||
| context.set_details('Method not implemented!') | |||
| raise NotImplementedError('Method not implemented!') | |||
| def Test(self, request, context): | |||
| """Missing associated documentation comment in .proto file""" | |||
| context.set_code(grpc.StatusCode.UNIMPLEMENTED) | |||
| context.set_details('Method not implemented!') | |||
| raise NotImplementedError('Method not implemented!') | |||
| def add_MSServiceServicer_to_server(servicer, server): | |||
| rpc_method_handlers = { | |||
| 'Predict': grpc.unary_unary_rpc_method_handler( | |||
| servicer.Predict, | |||
| request_deserializer=ms__service__pb2.PredictRequest.FromString, | |||
| response_serializer=ms__service__pb2.PredictReply.SerializeToString, | |||
| ), | |||
| 'Test': grpc.unary_unary_rpc_method_handler( | |||
| servicer.Test, | |||
| request_deserializer=ms__service__pb2.PredictRequest.FromString, | |||
| response_serializer=ms__service__pb2.PredictReply.SerializeToString, | |||
| ), | |||
| } | |||
| generic_handler = grpc.method_handlers_generic_handler( | |||
| 'ms_serving.MSService', rpc_method_handlers) | |||
| server.add_generic_rpc_handlers((generic_handler,)) | |||
| # This class is part of an EXPERIMENTAL API. | |||
| class MSService(object): | |||
| """Missing associated documentation comment in .proto file""" | |||
| @staticmethod | |||
| def Predict(request, | |||
| target, | |||
| options=(), | |||
| channel_credentials=None, | |||
| call_credentials=None, | |||
| compression=None, | |||
| wait_for_ready=None, | |||
| timeout=None, | |||
| metadata=None): | |||
| return grpc.experimental.unary_unary(request, target, '/ms_serving.MSService/Predict', | |||
| ms__service__pb2.PredictRequest.SerializeToString, | |||
| ms__service__pb2.PredictReply.FromString, | |||
| options, channel_credentials, | |||
| call_credentials, compression, wait_for_ready, timeout, metadata) | |||
| @staticmethod | |||
| def Test(request, | |||
| target, | |||
| options=(), | |||
| channel_credentials=None, | |||
| call_credentials=None, | |||
| compression=None, | |||
| wait_for_ready=None, | |||
| timeout=None, | |||
| metadata=None): | |||
| return grpc.experimental.unary_unary(request, target, '/ms_serving.MSService/Test', | |||
| ms__service__pb2.PredictRequest.SerializeToString, | |||
| ms__service__pb2.PredictReply.FromString, | |||
| options, channel_credentials, | |||
| call_credentials, compression, wait_for_ready, timeout, metadata) | |||
| @@ -0,0 +1,91 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| from mindspore.nn.optim import Momentum | |||
| from mindspore.ops import operations as P | |||
| import ms_service_pb2 | |||
| class LeNet(nn.Cell): | |||
| def __init__(self): | |||
| super(LeNet, self).__init__() | |||
| self.relu = P.ReLU() | |||
| self.batch_size = 32 | |||
| self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') | |||
| self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') | |||
| self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |||
| self.reshape = P.Reshape() | |||
| self.fc1 = nn.Dense(400, 120) | |||
| self.fc2 = nn.Dense(120, 84) | |||
| self.fc3 = nn.Dense(84, 10) | |||
| def construct(self, input_x): | |||
| output = self.conv1(input_x) | |||
| output = self.relu(output) | |||
| output = self.pool(output) | |||
| output = self.conv2(output) | |||
| output = self.relu(output) | |||
| output = self.pool(output) | |||
| output = self.reshape(output, (self.batch_size, -1)) | |||
| output = self.fc1(output) | |||
| output = self.relu(output) | |||
| output = self.fc2(output) | |||
| output = self.relu(output) | |||
| output = self.fc3(output) | |||
| return output | |||
| def train(net, data, label): | |||
| learning_rate = 0.01 | |||
| momentum = 0.9 | |||
| optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) | |||
| criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| net_with_criterion = WithLossCell(net, criterion) | |||
| train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer | |||
| train_network.set_train() | |||
| res = train_network(data, label) | |||
| print("+++++++++Loss+++++++++++++") | |||
| print(res) | |||
| print("+++++++++++++++++++++++++++") | |||
| assert res | |||
| return res | |||
| def test_lenet(data, label): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| net = LeNet() | |||
| return train(net, data, label) | |||
| if __name__ == '__main__': | |||
| tensor = ms_service_pb2.Tensor() | |||
| tensor.tensor_shape.dim.extend([32, 1, 32, 32]) | |||
| # tensor.tensor_shape.dim.add() = 1 | |||
| # tensor.tensor_shape.dim.add() = 32 | |||
| # tensor.tensor_shape.dim.add() = 32 | |||
| tensor.tensor_type = ms_service_pb2.MS_FLOAT32 | |||
| tensor.data = np.ones([32, 1, 32, 32]).astype(np.float32).tobytes() | |||
| data_from_buffer = np.frombuffer(tensor.data, dtype=np.float32) | |||
| print(tensor.tensor_shape.dim) | |||
| data_from_buffer = data_from_buffer.reshape(tensor.tensor_shape.dim) | |||
| print(data_from_buffer.shape) | |||
| input_data = Tensor(data_from_buffer * 0.01) | |||
| input_label = Tensor(np.ones([32]).astype(np.int32)) | |||
| test_lenet(input_data, input_label) | |||
| @@ -0,0 +1,105 @@ | |||
| #!/bin/bash | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| set -e | |||
| CLANG_FORMAT=$(which clang-format) || (echo "Please install 'clang-format' tool first"; exit 1) | |||
| version=$("${CLANG_FORMAT}" --version | sed -n "s/.*\ \([0-9]*\)\.[0-9]*\.[0-9]*.*/\1/p") | |||
| if [[ "${version}" -lt "8" ]]; then | |||
| echo "clang-format's version must be at least 8.0.0" | |||
| exit 1 | |||
| fi | |||
| CURRENT_PATH=$(pwd) | |||
| SCRIPTS_PATH=$(dirname "$0") | |||
| echo "CURRENT_PATH=${CURRENT_PATH}" | |||
| echo "SCRIPTS_PATH=${SCRIPTS_PATH}" | |||
| # print usage message | |||
| function usage() | |||
| { | |||
| echo "Format the specified source files to conform the code style." | |||
| echo "Usage:" | |||
| echo "bash $0 [-a] [-c] [-l] [-h]" | |||
| echo "e.g. $0 -c" | |||
| echo "" | |||
| echo "Options:" | |||
| echo " -a format of all files" | |||
| echo " -c format of the files changed compared to last commit, default case" | |||
| echo " -l format of the files changed in last commit" | |||
| echo " -h Print usage" | |||
| } | |||
| # check and set options | |||
| function checkopts() | |||
| { | |||
| # init variable | |||
| mode="changed" # default format changed files | |||
| # Process the options | |||
| while getopts 'aclh' opt | |||
| do | |||
| case "${opt}" in | |||
| a) | |||
| mode="all" | |||
| ;; | |||
| c) | |||
| mode="changed" | |||
| ;; | |||
| l) | |||
| mode="lastcommit" | |||
| ;; | |||
| h) | |||
| usage | |||
| exit 0 | |||
| ;; | |||
| *) | |||
| echo "Unknown option ${opt}!" | |||
| usage | |||
| exit 1 | |||
| esac | |||
| done | |||
| } | |||
| # init variable | |||
| # check options | |||
| checkopts "$@" | |||
| # switch to project root path, which contains clang-format config file '.clang-format' | |||
| cd "${SCRIPTS_PATH}/.." || exit 1 | |||
| FMT_FILE_LIST='__format_files_list__' | |||
| if [[ "X${mode}" == "Xall" ]]; then | |||
| find ./ -type f -name "*" | grep "\.h$\|\.cc$" > "${FMT_FILE_LIST}" || true | |||
| elif [[ "X${mode}" == "Xchanged" ]]; then | |||
| git diff --name-only | grep "\.h$\|\.cc$" > "${FMT_FILE_LIST}" || true | |||
| else # "X${mode}" == "Xlastcommit" | |||
| git diff --name-only HEAD~ HEAD | grep "\.h$\|\.cc$" > "${FMT_FILE_LIST}" || true | |||
| fi | |||
| while read line; do | |||
| if [ -f "${line}" ]; then | |||
| ${CLANG_FORMAT} -i "${line}" | |||
| fi | |||
| done < "${FMT_FILE_LIST}" | |||
| rm "${FMT_FILE_LIST}" | |||
| cd "${CURRENT_PATH}" || exit 1 | |||
| echo "Specified cpp source files have been format successfully." | |||