|
|
@@ -18,6 +18,7 @@ import matplotlib.pyplot as plt |
|
|
from mindspore import log as logger |
|
|
from mindspore import log as logger |
|
|
import mindspore.dataset.engine as de |
|
|
import mindspore.dataset.engine as de |
|
|
import mindspore.dataset.transforms.vision.py_transforms as F |
|
|
import mindspore.dataset.transforms.vision.py_transforms as F |
|
|
|
|
|
import mindspore.dataset.transforms.vision.c_transforms as C |
|
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testImageNetData/train/" |
|
|
DATA_DIR = "../data/dataset/testImageNetData/train/" |
|
|
|
|
|
|
|
|
@@ -101,7 +102,68 @@ def test_uniform_augment(plot=False, num_ops=2): |
|
|
if plot: |
|
|
if plot: |
|
|
visualize(images_original, images_ua) |
|
|
visualize(images_original, images_ua) |
|
|
|
|
|
|
|
|
|
|
|
def test_cpp_uniform_augment(plot=False, num_ops=2): |
|
|
|
|
|
""" |
|
|
|
|
|
Test UniformAugment |
|
|
|
|
|
""" |
|
|
|
|
|
logger.info("Test CPP UniformAugment") |
|
|
|
|
|
|
|
|
|
|
|
# Original Images |
|
|
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
|
|
|
|
|
|
|
|
transforms_original = [C.Decode(), C.Resize(size=[224, 224]), |
|
|
|
|
|
F.ToTensor()] |
|
|
|
|
|
|
|
|
|
|
|
ds_original = ds.map(input_columns="image", |
|
|
|
|
|
operations=transforms_original) |
|
|
|
|
|
|
|
|
|
|
|
ds_original = ds_original.batch(512) |
|
|
|
|
|
|
|
|
|
|
|
for idx, (image,label) in enumerate(ds_original): |
|
|
|
|
|
if idx == 0: |
|
|
|
|
|
images_original = np.transpose(image, (0, 2, 3, 1)) |
|
|
|
|
|
else: |
|
|
|
|
|
images_original = np.append(images_original, |
|
|
|
|
|
np.transpose(image, (0, 2, 3, 1)), |
|
|
|
|
|
axis=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# UniformAugment Images |
|
|
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
|
|
transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]), |
|
|
|
|
|
C.RandomHorizontalFlip(), |
|
|
|
|
|
C.RandomVerticalFlip(), |
|
|
|
|
|
C.RandomColorAdjust(), |
|
|
|
|
|
C.RandomRotation(degrees=45)] |
|
|
|
|
|
|
|
|
|
|
|
uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops) |
|
|
|
|
|
|
|
|
|
|
|
transforms_all = [C.Decode(), C.Resize(size=[224, 224]), |
|
|
|
|
|
uni_aug, |
|
|
|
|
|
F.ToTensor()] |
|
|
|
|
|
|
|
|
|
|
|
ds_ua = ds.map(input_columns="image", |
|
|
|
|
|
operations=transforms_all, num_parallel_workers=1) |
|
|
|
|
|
|
|
|
|
|
|
ds_ua = ds_ua.batch(512) |
|
|
|
|
|
|
|
|
|
|
|
for idx, (image,label) in enumerate(ds_ua): |
|
|
|
|
|
if idx == 0: |
|
|
|
|
|
images_ua = np.transpose(image, (0, 2, 3, 1)) |
|
|
|
|
|
else: |
|
|
|
|
|
images_ua = np.append(images_ua, |
|
|
|
|
|
np.transpose(image, (0, 2, 3, 1)), |
|
|
|
|
|
axis=0) |
|
|
|
|
|
if plot: |
|
|
|
|
|
visualize(images_original, images_ua) |
|
|
|
|
|
|
|
|
|
|
|
num_samples = images_original.shape[0] |
|
|
|
|
|
mse = np.zeros(num_samples) |
|
|
|
|
|
for i in range(num_samples): |
|
|
|
|
|
mse[i] = np.mean((images_ua[i] - images_original[i]) ** 2) |
|
|
|
|
|
logger.info("MSE= {}".format(str(np.mean(mse)))) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
if __name__ == "__main__": |
|
|
test_uniform_augment(num_ops=1) |
|
|
test_uniform_augment(num_ops=1) |
|
|
|
|
|
test_cpp_uniform_augment(num_ops=1) |
|
|
|
|
|
|