Merge pull request !1964 from meixiaowei/mastertags/v0.5.0-beta
| @@ -1,142 +0,0 @@ | |||
| # ResNet101 Example | |||
| ## Description | |||
| This is an example of training ResNet101 with ImageNet dataset in MindSpore. | |||
| ## Requirements | |||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||
| - Download the dataset ImageNet2012. | |||
| > Unzip the ImageNet2012 dataset to any path you want, the folder should include train and eval dataset as follows: | |||
| ``` | |||
| . | |||
| └─dataset | |||
| ├─ilsvrc | |||
| │ | |||
| └─validation_preprocess | |||
| ``` | |||
| ## Example structure | |||
| ```shell | |||
| . | |||
| ├── crossentropy.py # CrossEntropy loss function | |||
| ├── config.py # parameter configuration | |||
| ├── dataset.py # data preprocessing | |||
| ├── eval.py # eval net | |||
| ├── lr_generator.py # generate learning rate | |||
| ├── run_distribute_train.sh # launch distributed training(8p) | |||
| ├── run_infer.sh # launch evaluating | |||
| ├── run_standalone_train.sh # launch standalone training(1p) | |||
| └── train.py # train net | |||
| ``` | |||
| ## Parameter configuration | |||
| Parameters for both training and evaluating can be set in config.py. | |||
| ``` | |||
| "class_num": 1001, # dataset class number | |||
| "batch_size": 32, # batch size of input tensor | |||
| "loss_scale": 1024, # loss scale | |||
| "momentum": 0.9, # momentum optimizer | |||
| "weight_decay": 1e-4, # weight decay | |||
| "epoch_size": 120, # epoch sizes for training | |||
| "pretrain_epoch_size": 0, # epoch size of pretrain checkpoint | |||
| "buffer_size": 1000, # number of queue size in data preprocessing | |||
| "image_height": 224, # image height | |||
| "image_width": 224, # image width | |||
| "save_checkpoint": True, # whether save checkpoint or not | |||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch | |||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||
| "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path | |||
| "warmup_epochs": 0, # number of warmup epoch | |||
| "lr_decay_mode": "cosine" # decay mode for generating learning rate | |||
| "label_smooth": 1, # label_smooth | |||
| "label_smooth_factor": 0.1, # label_smooth_factor | |||
| "lr": 0.1 # base learning rate | |||
| ``` | |||
| ## Running the example | |||
| ### Train | |||
| #### Usage | |||
| ``` | |||
| # distributed training | |||
| sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional) | |||
| # standalone training | |||
| sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional) | |||
| ``` | |||
| #### Launch | |||
| ```bash | |||
| # distributed training example(8p) | |||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc | |||
| If you want to load pretrained ckpt file, | |||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt | |||
| # standalone training example(1p) | |||
| sh run_standalone_train.sh dataset/ilsvrc | |||
| If you want to load pretrained ckpt file, | |||
| sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt | |||
| ``` | |||
| > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). | |||
| #### Result | |||
| Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log. | |||
| ``` | |||
| # distribute training result(8p) | |||
| epoch: 1 step: 5004, loss is 4.805483 | |||
| epoch: 2 step: 5004, loss is 3.2121816 | |||
| epoch: 3 step: 5004, loss is 3.429647 | |||
| epoch: 4 step: 5004, loss is 3.3667371 | |||
| epoch: 5 step: 5004, loss is 3.1718972 | |||
| ... | |||
| epoch: 67 step: 5004, loss is 2.2768745 | |||
| epoch: 68 step: 5004, loss is 1.7223864 | |||
| epoch: 69 step: 5004, loss is 2.0665488 | |||
| epoch: 70 step: 5004, loss is 1.8717369 | |||
| ... | |||
| ``` | |||
| ### Infer | |||
| #### Usage | |||
| ``` | |||
| # infer | |||
| sh run_infer.sh [VALIDATION_DATASET_PATH] [CHECKPOINT_PATH] | |||
| ``` | |||
| #### Launch | |||
| ```bash | |||
| # infer with checkpoint | |||
| sh run_infer.sh dataset/validation_preprocess/ train_parallel0/resnet-120_5004.ckpt | |||
| ``` | |||
| > checkpoint can be produced in training process. | |||
| #### Result | |||
| Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log. | |||
| ``` | |||
| result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt | |||
| ``` | |||
| @@ -1,40 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in train.py and eval.py | |||
| """ | |||
| from easydict import EasyDict as ed | |||
| config = ed({ | |||
| "class_num": 1001, | |||
| "batch_size": 32, | |||
| "loss_scale": 1024, | |||
| "momentum": 0.9, | |||
| "weight_decay": 1e-4, | |||
| "epoch_size": 120, | |||
| "pretrain_epoch_size": 0, | |||
| "buffer_size": 1000, | |||
| "image_height": 224, | |||
| "image_width": 224, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_epochs": 5, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 0, | |||
| "lr_decay_mode": "cosine", | |||
| "label_smooth": 1, | |||
| "label_smooth_factor": 0.1, | |||
| "lr": 0.1 | |||
| }) | |||
| @@ -1,36 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """define loss function for network""" | |||
| from mindspore.nn.loss.loss import _Loss | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import functional as F | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| import mindspore.nn as nn | |||
| class CrossEntropy(_Loss): | |||
| """the redefined loss function with SoftmaxCrossEntropyWithLogits""" | |||
| def __init__(self, smooth_factor=0., num_classes=1001): | |||
| super(CrossEntropy, self).__init__() | |||
| self.onehot = P.OneHot() | |||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes -1), mstype.float32) | |||
| self.ce = nn.SoftmaxCrossEntropyWithLogits() | |||
| self.mean = P.ReduceMean(False) | |||
| def construct(self, logit, label): | |||
| one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||
| loss = self.ce(logit, one_hot_label) | |||
| loss = self.mean(loss, 0) | |||
| return loss | |||
| @@ -1,89 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| create train or eval dataset. | |||
| """ | |||
| import os | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.dataset.engine as de | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import mindspore.dataset.transforms.c_transforms as C2 | |||
| from config import config | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||
| """ | |||
| create a train or evaluate dataset | |||
| Args: | |||
| dataset_path(string): the path of dataset. | |||
| do_train(bool): whether dataset is used for train or eval. | |||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||
| batch_size(int): the batch size of dataset. Default: 32 | |||
| Returns: | |||
| dataset | |||
| """ | |||
| device_num = int(os.getenv("RANK_SIZE")) | |||
| rank_id = int(os.getenv("RANK_ID")) | |||
| if device_num == 1: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | |||
| else: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, | |||
| num_shards=device_num, shard_id=rank_id) | |||
| resize_height = 224 | |||
| rescale = 1.0 / 255.0 | |||
| shift = 0.0 | |||
| # define map operations | |||
| decode_op = C.Decode() | |||
| random_resize_crop_op = C.RandomResizedCrop(resize_height, (0.08, 1.0), (0.75, 1.33), max_attempts=100) | |||
| horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1)) | |||
| resize_op_256 = C.Resize((256, 256)) | |||
| center_crop = C.CenterCrop(224) | |||
| rescale_op = C.Rescale(rescale, shift) | |||
| normalize_op = C.Normalize((0.475, 0.451, 0.392), (0.275, 0.267, 0.278)) | |||
| changeswap_op = C.HWC2CHW() | |||
| trans = [] | |||
| if do_train: | |||
| trans = [decode_op, | |||
| random_resize_crop_op, | |||
| horizontal_flip_op, | |||
| rescale_op, | |||
| normalize_op, | |||
| changeswap_op] | |||
| else: | |||
| trans = [decode_op, | |||
| resize_op_256, | |||
| center_crop, | |||
| rescale_op, | |||
| normalize_op, | |||
| changeswap_op] | |||
| type_cast_op = C2.TypeCast(mstype.int32) | |||
| ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8) | |||
| ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8) | |||
| # apply shuffle operations | |||
| ds = ds.shuffle(buffer_size=config.buffer_size) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| return ds | |||
| @@ -1,75 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| eval. | |||
| """ | |||
| import os | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| from dataset import create_dataset | |||
| from config import config | |||
| from mindspore import context | |||
| from mindspore.model_zoo.resnet import resnet101 | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.train.model import Model, ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.communication.management import init | |||
| from crossentropy import CrossEntropy | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||
| parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.') | |||
| parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') | |||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| args_opt = parser.parse_args() | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) | |||
| if __name__ == '__main__': | |||
| if not args_opt.do_eval and args_opt.run_distribute: | |||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| mirror_mean=True, parameter_broadcast=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313]) | |||
| init() | |||
| epoch_size = config.epoch_size | |||
| net = resnet101(class_num=config.class_num) | |||
| if not config.label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | |||
| if args_opt.do_eval: | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) | |||
| step_size = dataset.get_dataset_size() | |||
| if args_opt.checkpoint_path: | |||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||
| load_param_into_net(net, param_dict) | |||
| net.set_train(False) | |||
| model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||
| res = model.eval(dataset) | |||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||
| @@ -1,56 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """learning rate generator""" | |||
| import math | |||
| import numpy as np | |||
| def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): | |||
| lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) | |||
| lr = float(init_lr) + lr_inc * current_step | |||
| return lr | |||
| def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch=120, global_step=0): | |||
| """ | |||
| generate learning rate array with cosine | |||
| Args: | |||
| lr(float): base learning rate | |||
| steps_per_epoch(int): steps size of one epoch | |||
| warmup_epochs(int): number of warmup epochs | |||
| max_epoch(int): total epochs of training | |||
| global_step(int): the current start index of lr array | |||
| Returns: | |||
| np.array, learning rate array | |||
| """ | |||
| base_lr = lr | |||
| warmup_init_lr = 0 | |||
| total_steps = int(max_epoch * steps_per_epoch) | |||
| warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
| decay_steps = total_steps - warmup_steps | |||
| lr_each_step = [] | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
| else: | |||
| linear_decay = (total_steps - i) / decay_steps | |||
| cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps)) | |||
| decayed = linear_decay * cosine_decay + 0.00001 | |||
| lr = base_lr * decayed | |||
| lr_each_step.append(lr) | |||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||
| learning_rate = lr_each_step[global_step:] | |||
| return learning_rate | |||
| @@ -1,86 +0,0 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 2 ] && [ $# != 3 ] | |||
| then | |||
| echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $1) | |||
| PATH2=$(get_real_path $2) | |||
| echo $PATH1 | |||
| echo $PATH2 | |||
| if [ $# == 3 ] | |||
| then | |||
| PATH3=$(get_real_path $3) | |||
| echo $PATH3 | |||
| fi | |||
| if [ ! -f $PATH1 ] | |||
| then | |||
| echo "error: MINDSPORE_HCCL_CONFIG_PATH=$PATH1 is not a file" | |||
| exit 1 | |||
| fi | |||
| if [ ! -d $PATH2 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH2 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ $# == 3 ] && [ ! -f $PATH3 ] | |||
| then | |||
| echo "error: PRETRAINED_PATH=$PATH3 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=8 | |||
| export RANK_SIZE=8 | |||
| export MINDSPORE_HCCL_CONFIG_PATH=$PATH1 | |||
| export RANK_TABLE_FILE=$PATH1 | |||
| for((i=0; i<${DEVICE_NUM}; i++)) | |||
| do | |||
| export DEVICE_ID=$i | |||
| export RANK_ID=$i | |||
| rm -rf ./train_parallel$i | |||
| mkdir ./train_parallel$i | |||
| cp *.py ./train_parallel$i | |||
| cp *.sh ./train_parallel$i | |||
| cd ./train_parallel$i || exit | |||
| echo "start training for rank $RANK_ID, device $DEVICE_ID" | |||
| env > env.log | |||
| if [ $# == 2 ] | |||
| then | |||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||
| fi | |||
| if [ $# == 3 ] | |||
| then | |||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log & | |||
| fi | |||
| cd .. | |||
| done | |||
| @@ -1,64 +0,0 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 2 ] | |||
| then | |||
| echo "Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $1) | |||
| PATH2=$(get_real_path $2) | |||
| echo $PATH1 | |||
| echo $PATH2 | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: CHECKPOINT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=0 | |||
| export RANK_SIZE=$DEVICE_NUM | |||
| export RANK_ID=0 | |||
| if [ -d "infer" ]; | |||
| then | |||
| rm -rf ./infer | |||
| fi | |||
| mkdir ./infer | |||
| cp *.py ./infer | |||
| cp *.sh ./infer | |||
| cd ./infer || exit | |||
| env > env.log | |||
| echo "start infering for device $DEVICE_ID" | |||
| python eval.py --do_eval=True --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log & | |||
| cd .. | |||
| @@ -1,75 +0,0 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 1 ] && [ $# != 2 ] | |||
| then | |||
| echo "Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $1) | |||
| echo $PATH1 | |||
| if [ $# == 2 ] | |||
| then | |||
| PATH2=$(get_real_path $2) | |||
| echo $PATH2 | |||
| fi | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ $# == 2 ] && [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: PRETRAINED_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=0 | |||
| export RANK_ID=0 | |||
| export RANK_SIZE=1 | |||
| if [ -d "train" ]; | |||
| then | |||
| rm -rf ./train | |||
| fi | |||
| mkdir ./train | |||
| cp *.py ./train | |||
| cp *.sh ./train | |||
| cd ./train || exit | |||
| echo "start training for device $DEVICE_ID" | |||
| env > env.log | |||
| if [ $# == 1 ] | |||
| then | |||
| python train.py --do_train=True --dataset_path=$PATH1 &> log & | |||
| fi | |||
| if [ $# == 2 ] | |||
| then | |||
| python train.py --do_train=True --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||
| fi | |||
| cd .. | |||
| @@ -1,102 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train_imagenet.""" | |||
| import os | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| from dataset import create_dataset | |||
| from lr_generator import warmup_cosine_annealing_lr | |||
| from config import config | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| from mindspore.model_zoo.resnet import resnet101 | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.model import Model, ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.communication.management import init | |||
| import mindspore.nn as nn | |||
| import mindspore.common.initializer as weight_init | |||
| from crossentropy import CrossEntropy | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | |||
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | |||
| args_opt = parser.parse_args() | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, | |||
| enable_auto_mixed_precision=True) | |||
| if __name__ == '__main__': | |||
| if not args_opt.do_eval and args_opt.run_distribute: | |||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| mirror_mean=True, parameter_broadcast=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313]) | |||
| init() | |||
| epoch_size = config.epoch_size | |||
| net = resnet101(class_num=config.class_num) | |||
| # weight init | |||
| for _, cell in net.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), | |||
| cell.weight.default_input.shape(), | |||
| cell.weight.default_input.dtype()).to_tensor() | |||
| if isinstance(cell, nn.Dense): | |||
| cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), | |||
| cell.weight.default_input.shape(), | |||
| cell.weight.default_input.dtype()).to_tensor() | |||
| if not config.label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | |||
| if args_opt.do_train: | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | |||
| repeat_num=epoch_size, batch_size=config.batch_size) | |||
| step_size = dataset.get_dataset_size() | |||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | |||
| if args_opt.pre_trained: | |||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||
| load_param_into_net(net, param_dict) | |||
| # learning rate strategy with cosine | |||
| lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, 120, | |||
| config.pretrain_epoch_size*step_size)) | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | |||
| config.weight_decay, config.loss_scale) | |||
| model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False, | |||
| loss_scale_manager=loss_scale, metrics={'acc'}) | |||
| time_cb = TimeMonitor(data_size=step_size) | |||
| loss_cb = LossMonitor() | |||
| cb = [time_cb, loss_cb] | |||
| if config.save_checkpoint: | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size, | |||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||
| ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck) | |||
| cb += [ckpt_cb] | |||
| model.train(epoch_size, dataset, callbacks=cb) | |||
| @@ -35,6 +35,7 @@ This is an example of training ResNet101 with ImageNet dataset in MindSpore. | |||
| ├─crossentropy.py # CrossEntropy loss function | |||
| ├─dataset.py # data preprocessin | |||
| ├─lr_generator.py # generate learning rate | |||
| ├─resnet101.py # resnet101 backbone | |||
| ├─eval.py # eval net | |||
| └─train.py # train net | |||
| ``` | |||
| @@ -20,12 +20,12 @@ import argparse | |||
| import random | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore.model_zoo.resnet import resnet101 | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.train.model import Model, ParallelMode | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.communication.management import init | |||
| from src.resnet101 import resnet101 | |||
| from src.dataset import create_dataset | |||
| from src.config import config | |||
| from src.crossentropy import CrossEntropy | |||
| @@ -0,0 +1,261 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ResNet101.""" | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.tensor import Tensor | |||
| def _weight_variable(shape, factor=0.01): | |||
| init_value = np.random.randn(*shape).astype(np.float32) * factor | |||
| return Tensor(init_value) | |||
| def _conv3x3(in_channel, out_channel, stride=1): | |||
| weight_shape = (out_channel, in_channel, 3, 3) | |||
| weight = _weight_variable(weight_shape) | |||
| return nn.Conv2d(in_channel, out_channel, | |||
| kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight) | |||
| def _conv1x1(in_channel, out_channel, stride=1): | |||
| weight_shape = (out_channel, in_channel, 1, 1) | |||
| weight = _weight_variable(weight_shape) | |||
| return nn.Conv2d(in_channel, out_channel, | |||
| kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight) | |||
| def _conv7x7(in_channel, out_channel, stride=1): | |||
| weight_shape = (out_channel, in_channel, 7, 7) | |||
| weight = _weight_variable(weight_shape) | |||
| return nn.Conv2d(in_channel, out_channel, | |||
| kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight) | |||
| def _bn(channel): | |||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||
| gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||
| def _bn_last(channel): | |||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||
| gamma_init=0, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||
| def _fc(in_channel, out_channel): | |||
| weight_shape = (out_channel, in_channel) | |||
| weight = _weight_variable(weight_shape) | |||
| return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0) | |||
| class ResidualBlock(nn.Cell): | |||
| """ | |||
| ResNet V1 residual block definition. | |||
| Args: | |||
| in_channel (int): Input channel. | |||
| out_channel (int): Output channel. | |||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ResidualBlock(3, 256, stride=2) | |||
| """ | |||
| expansion = 4 | |||
| def __init__(self, | |||
| in_channel, | |||
| out_channel, | |||
| stride=1): | |||
| super(ResidualBlock, self).__init__() | |||
| channel = out_channel // self.expansion | |||
| self.conv1 = _conv1x1(in_channel, channel, stride=1) | |||
| self.bn1 = _bn(channel) | |||
| self.conv2 = _conv3x3(channel, channel, stride=stride) | |||
| self.bn2 = _bn(channel) | |||
| self.conv3 = _conv1x1(channel, out_channel, stride=1) | |||
| self.bn3 = _bn_last(out_channel) | |||
| self.relu = nn.ReLU() | |||
| self.down_sample = False | |||
| if stride != 1 or in_channel != out_channel: | |||
| self.down_sample = True | |||
| self.down_sample_layer = None | |||
| if self.down_sample: | |||
| self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride), | |||
| _bn(out_channel)]) | |||
| self.add = P.TensorAdd() | |||
| def construct(self, x): | |||
| identity = x | |||
| out = self.conv1(x) | |||
| out = self.bn1(out) | |||
| out = self.relu(out) | |||
| out = self.conv2(out) | |||
| out = self.bn2(out) | |||
| out = self.relu(out) | |||
| out = self.conv3(out) | |||
| out = self.bn3(out) | |||
| if self.down_sample: | |||
| identity = self.down_sample_layer(identity) | |||
| out = self.add(out, identity) | |||
| out = self.relu(out) | |||
| return out | |||
| class ResNet(nn.Cell): | |||
| """ | |||
| ResNet architecture. | |||
| Args: | |||
| block (Cell): Block for network. | |||
| layer_nums (list): Numbers of block in different layers. | |||
| in_channels (list): Input channel in each layer. | |||
| out_channels (list): Output channel in each layer. | |||
| strides (list): Stride size in each layer. | |||
| num_classes (int): The number of classes that the training images are belonging to. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ResNet(ResidualBlock, | |||
| >>> [3, 4, 6, 3], | |||
| >>> [64, 256, 512, 1024], | |||
| >>> [256, 512, 1024, 2048], | |||
| >>> [1, 2, 2, 2], | |||
| >>> 10) | |||
| """ | |||
| def __init__(self, | |||
| block, | |||
| layer_nums, | |||
| in_channels, | |||
| out_channels, | |||
| strides, | |||
| num_classes): | |||
| super(ResNet, self).__init__() | |||
| if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: | |||
| raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!") | |||
| self.conv1 = _conv7x7(3, 64, stride=2) | |||
| self.bn1 = _bn(64) | |||
| self.relu = P.ReLU() | |||
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") | |||
| self.layer1 = self._make_layer(block, | |||
| layer_nums[0], | |||
| in_channel=in_channels[0], | |||
| out_channel=out_channels[0], | |||
| stride=strides[0]) | |||
| self.layer2 = self._make_layer(block, | |||
| layer_nums[1], | |||
| in_channel=in_channels[1], | |||
| out_channel=out_channels[1], | |||
| stride=strides[1]) | |||
| self.layer3 = self._make_layer(block, | |||
| layer_nums[2], | |||
| in_channel=in_channels[2], | |||
| out_channel=out_channels[2], | |||
| stride=strides[2]) | |||
| self.layer4 = self._make_layer(block, | |||
| layer_nums[3], | |||
| in_channel=in_channels[3], | |||
| out_channel=out_channels[3], | |||
| stride=strides[3]) | |||
| self.mean = P.ReduceMean(keep_dims=True) | |||
| self.flatten = nn.Flatten() | |||
| self.end_point = _fc(out_channels[3], num_classes) | |||
| def _make_layer(self, block, layer_num, in_channel, out_channel, stride): | |||
| """ | |||
| Make stage network of ResNet. | |||
| Args: | |||
| block (Cell): Resnet block. | |||
| layer_num (int): Layer number. | |||
| in_channel (int): Input channel. | |||
| out_channel (int): Output channel. | |||
| stride (int): Stride size for the first convolutional layer. | |||
| Returns: | |||
| SequentialCell, the output layer. | |||
| Examples: | |||
| >>> _make_layer(ResidualBlock, 3, 128, 256, 2) | |||
| """ | |||
| layers = [] | |||
| resnet_block = block(in_channel, out_channel, stride=stride) | |||
| layers.append(resnet_block) | |||
| for _ in range(1, layer_num): | |||
| resnet_block = block(out_channel, out_channel, stride=1) | |||
| layers.append(resnet_block) | |||
| return nn.SequentialCell(layers) | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.bn1(x) | |||
| x = self.relu(x) | |||
| c1 = self.maxpool(x) | |||
| c2 = self.layer1(c1) | |||
| c3 = self.layer2(c2) | |||
| c4 = self.layer3(c3) | |||
| c5 = self.layer4(c4) | |||
| out = self.mean(c5, (2, 3)) | |||
| out = self.flatten(out) | |||
| out = self.end_point(out) | |||
| return out | |||
| def resnet101(class_num=1001): | |||
| """ | |||
| Get ResNet101 neural network. | |||
| Args: | |||
| class_num (int): Class number. | |||
| Returns: | |||
| Cell, cell instance of ResNet101 neural network. | |||
| Examples: | |||
| >>> net = resnet101(1001) | |||
| """ | |||
| return ResNet(ResidualBlock, | |||
| [3, 4, 23, 3], | |||
| [64, 256, 512, 1024], | |||
| [256, 512, 1024, 2048], | |||
| [1, 2, 2, 2], | |||
| class_num) | |||
| @@ -19,7 +19,6 @@ import random | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| from mindspore.model_zoo.resnet import resnet101 | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.model import Model, ParallelMode | |||
| @@ -30,6 +29,7 @@ import mindspore.dataset.engine as de | |||
| from mindspore.communication.management import init | |||
| import mindspore.nn as nn | |||
| import mindspore.common.initializer as weight_init | |||
| from src.resnet101 import resnet101 | |||
| from src.dataset import create_dataset | |||
| from src.lr_generator import warmup_cosine_annealing_lr | |||
| from src.config import config | |||