| @@ -11,4 +11,6 @@ set(OPENCL_KERNEL_SRC | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/kernel/conv2d_transpose.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/kernel/transpose.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/kernel/reshape.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/kernel/activation.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/kernel/caffe_prelu.cc | |||
| ) | |||
| @@ -0,0 +1,26 @@ | |||
| #pragma OPENCL EXTENSION cl_arm_printf : enable | |||
| #define SLICES 4 | |||
| #define UP_DIV(x, y) (((x) + (y) - (1)) / (y)) | |||
| #define FLT4 float4 | |||
| #define READ_FLT4 read_imagef | |||
| #define WRITE_FLT4 write_imagef | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void CaffePRelu(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape, | |||
| __global float *alpha) { | |||
| int C = input_shape.w; // channel size | |||
| int Y = get_global_id(0); // height id | |||
| int X = get_global_id(1); // weight id | |||
| for (int num = 0; num < UP_DIV(C, SLICES); ++num) { | |||
| FLT4 in_c4 = READ_FLT4(input, smp_zero, (int2)(X * UP_DIV(C, SLICES) + num, Y)); // NHWC4: H WC | |||
| FLT4 tmp; | |||
| int index = num * 4; | |||
| tmp.x = in_c4.x * alpha[index]; | |||
| tmp.y = in_c4.y * alpha[index + 1]; | |||
| tmp.z = in_c4.z * alpha[index + 2]; | |||
| tmp.w = in_c4.w * alpha[index + 3]; | |||
| WRITE_FLT4(output, (int2)(X * UP_DIV(C, SLICES) + num, Y), tmp); // NHWC4: H WC | |||
| } | |||
| } | |||
| @@ -44,7 +44,6 @@ int ActivationOpenClKernel::Init() { | |||
| MS_LOG(ERROR) << "Activate fun only support dim=4, but your dim=" << in_tensors_[0]->shape().size(); | |||
| return RET_ERROR; | |||
| } | |||
| ori_format_ = out_tensors_[0]->GetFormat(); | |||
| std::string program_name = ""; | |||
| std::string kernel_name = ""; | |||
| std::string source = activation_source_fp32; | |||
| @@ -68,6 +67,8 @@ int ActivationOpenClKernel::Init() { | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->LoadSource(program_name, source); | |||
| ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options); | |||
| ori_format_ = out_tensors_[0]->GetFormat(); | |||
| out_tensors_[0]->SetFormat(schema::Format_NHWC4); | |||
| MS_LOG(DEBUG) << op_parameter_->name_ << " init Done!"; | |||
| return RET_OK; | |||
| } | |||
| @@ -0,0 +1,150 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <string> | |||
| #include <set> | |||
| #include <vector> | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| #include "src/runtime/kernel/opencl/kernel/caffe_prelu.h" | |||
| #include "src/runtime/opencl/opencl_runtime.h" | |||
| #include "src/runtime/kernel/opencl/cl/fp32/caffe_prelu.cl.inc" | |||
| #include "src/runtime/kernel/arm/nnacl/caffeprelu.h" | |||
| using mindspore::kernel::KERNEL_ARCH::kGPU; | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_CaffePReLU; | |||
| namespace mindspore::kernel { | |||
| void CaffePReluOpenCLKernel::CaffeWeight() { | |||
| int C = in_tensors_[1]->shape()[0]; | |||
| int div_ci = UP_DIV(C, C4NUM); | |||
| std::cout << div_ci << std::endl; | |||
| auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator(); | |||
| CaffeWeight_ = reinterpret_cast<FLOAT_t *>(allocator->Malloc(div_ci * C4NUM * sizeof(FLOAT_t))); | |||
| CaffeWeight_ = reinterpret_cast<FLOAT_t *>(allocator->MapBuffer(CaffeWeight_, CL_MAP_WRITE, nullptr, true)); | |||
| memset(CaffeWeight_, 0x00, div_ci * C4NUM * sizeof(FLOAT_t)); | |||
| auto origin_weight = reinterpret_cast<FLOAT_t *>(in_tensors_[1]->Data()); | |||
| for (int i = 0; i < in_tensors_[1]->ElementsNum(); ++i) { | |||
| CaffeWeight_[i] = origin_weight[i]; | |||
| } | |||
| allocator->UnmapBuffer(CaffeWeight_); | |||
| } | |||
| int CaffePReluOpenCLKernel::Init() { | |||
| if (in_tensors_[0]->shape().size() != 4) { | |||
| MS_LOG(ERROR) << "Caffe PRelu only support dim=4, but your dim=" << in_tensors_[0]->shape().size(); | |||
| return RET_ERROR; | |||
| } | |||
| CaffeWeight(); | |||
| std::set<std::string> build_options; | |||
| std::string source = caffe_prelu_source_fp32; | |||
| std::string program_name = "CaffePRelu"; | |||
| std::string kernel_name = "CaffePRelu"; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->LoadSource(program_name, source); | |||
| ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options); | |||
| ori_format_ = out_tensors_[0]->GetFormat(); | |||
| out_tensors_[0]->SetFormat(schema::Format_NHWC4); | |||
| MS_LOG(DEBUG) << program_name << " Init Done!"; | |||
| return RET_OK; | |||
| } | |||
| int CaffePReluOpenCLKernel::Run() { | |||
| int N = in_tensors_[0]->shape()[0]; | |||
| int H = in_tensors_[0]->shape()[1]; | |||
| int W = in_tensors_[0]->shape()[2]; | |||
| int C = in_tensors_[0]->shape()[3]; | |||
| cl_int4 input_shape = {N, H, W, C}; | |||
| int C_Weight = in_tensors_[1]->shape()[0]; | |||
| if (UP_DIV(C_Weight, C4NUM) != UP_DIV(C, C4NUM)) { | |||
| MS_LOG(ERROR) << "CaffePRelu weight channel size:" << C_Weight | |||
| << " must be equal with in_teneors channel size:" << C; | |||
| return RET_ERROR; | |||
| } | |||
| MS_LOG(DEBUG) << op_parameter_->name_ << " Running!"; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| int arg_idx = 0; | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, input_shape); | |||
| ocl_runtime->SetKernelArg(kernel_, arg_idx++, CaffeWeight_); | |||
| std::vector<size_t> local = {1, 1}; | |||
| std::vector<size_t> global = {static_cast<size_t>(H), static_cast<size_t>(W)}; | |||
| auto ret = ocl_runtime->RunKernel(kernel_, global, local, nullptr); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Run kernel " << op_parameter_->name_ << " error."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int CaffePReluOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) { | |||
| int H = in_tensors_[0]->shape()[1]; | |||
| int W = in_tensors_[0]->shape()[2]; | |||
| int C = in_tensors_[0]->shape()[3]; | |||
| #ifdef ENABLE_FP16 | |||
| size_t img_dtype = CL_HALF_FLOAT; | |||
| #else | |||
| size_t img_dtype = CL_FLOAT; | |||
| #endif | |||
| img_size->clear(); | |||
| img_size->push_back(W * UP_DIV(C, C4NUM)); | |||
| img_size->push_back(H); | |||
| img_size->push_back(img_dtype); | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *OpenCLCaffePReluKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs, | |||
| const std::vector<lite::tensor::Tensor *> &outputs, | |||
| OpParameter *opParameter, const lite::Context *ctx, | |||
| const kernel::KernelKey &desc, const lite::Primitive *primitive) { | |||
| if (inputs.size() == 0) { | |||
| MS_LOG(ERROR) << "Input data size must be greater than 0, but your size is " << inputs.size(); | |||
| return nullptr; | |||
| } | |||
| if (inputs[0]->shape()[0] > 1) { | |||
| MS_LOG(ERROR) << "Init CaffePRelu kernel failed: Unsupported multi-batch."; | |||
| return nullptr; | |||
| } | |||
| auto *kernel = | |||
| new (std::nothrow) CaffePReluOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "Kernel " << opParameter->name_ << "is nullptr."; | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init CaffePRelu kernel failed!"; | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_CaffePReLU, OpenCLCaffePReluKernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -0,0 +1,49 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_CAFFEPRELU_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_CAFFEPRELU_H_ | |||
| #include <vector> | |||
| #include <string> | |||
| #include "src/ir/tensor.h" | |||
| #include "src/runtime/kernel/opencl/opencl_kernel.h" | |||
| #include "schema/model_generated.h" | |||
| #include "src/runtime/opencl/opencl_runtime.h" | |||
| namespace mindspore::kernel { | |||
| class CaffePReluOpenCLKernel : public OpenCLKernel { | |||
| public: | |||
| explicit CaffePReluOpenCLKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs, | |||
| const std::vector<lite::tensor::Tensor *> &outputs) | |||
| : OpenCLKernel(parameter, inputs, outputs) {} | |||
| ~CaffePReluOpenCLKernel() override{}; | |||
| int Init() override; | |||
| int Run() override; | |||
| int GetImageSize(size_t idx, std::vector<size_t> *img_size) override; | |||
| void CaffeWeight(); | |||
| private: | |||
| cl::Kernel kernel_; | |||
| FLOAT_t *CaffeWeight_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_CAFFEPRELU_H_ | |||
| @@ -122,7 +122,8 @@ void *OpenCLAllocator::Malloc(size_t size, const std::vector<size_t> &img_size) | |||
| mem_buf->host_ptr_ = host_ptr; | |||
| mem_buf->image_ptr_ = image_ptr; | |||
| mem_buf->img_size = img_size; | |||
| MS_LOG(DEBUG) << "Malloc a new buffer. size: " << mem_buf->size_ << ", host addr: " << mem_buf->host_ptr_ | |||
| std::string type_name = img_size.empty() ? "buffer" : "Image2D"; | |||
| MS_LOG(DEBUG) << "Malloc a new " << type_name << ". size: " << mem_buf->size_ << ", host addr: " << mem_buf->host_ptr_ | |||
| << ", device addr: " << mem_buf->device_ptr_ << ", image_addr: " << image_ptr; | |||
| allocated_list_[host_ptr] = mem_buf.release(); | |||
| UnLock(); | |||
| @@ -149,6 +149,7 @@ if (SUPPORT_GPU) | |||
| ${LITE_DIR}/src/runtime/kernel/opencl/kernel/transpose.cc | |||
| ${LITE_DIR}/src/runtime/kernel/opencl/kernel/reshape.cc | |||
| ${LITE_DIR}/src/runtime/kernel/opencl/kernel/to_format.cc | |||
| ${LITE_DIR}/src/runtime/kernel/opencl/kernel/caffe_prelu.cc | |||
| ) | |||
| endif() | |||
| ### minddata lite | |||
| @@ -322,15 +323,15 @@ if (SUPPORT_GPU) | |||
| ${TEST_DIR}/ut/src/runtime/kernel/opencl/transpose_tests.cc | |||
| ${TEST_DIR}/ut/src/runtime/kernel/opencl/convolution_tests.cc | |||
| ${TEST_DIR}/ut/src/runtime/kernel/opencl/activation_tests.cc | |||
| #${TEST_DIR}/ut/src/runtime/kernel/opencl/leakyrelu_tests.cc | |||
| ${TEST_DIR}/ut/src/runtime/kernel/opencl/to_format_tests.cc | |||
| ${TEST_DIR}/ut/src/runtime/kernel/opencl/caffe_prelu_tests.cc | |||
| ) | |||
| endif() | |||
| if (ENABLE_FP16) | |||
| set(TEST_SRC | |||
| ${TEST_SRC} | |||
| ) | |||
| ${TEST_DIR}/ut/src/runtime/kernel/arm/fp16/convolution_fp16_tests.cc) | |||
| endif () | |||
| @@ -128,7 +128,7 @@ int RunSubGraphOpenCLKernel(const std::vector<lite::tensor::Tensor *> &inputs, | |||
| return RET_OK; | |||
| } | |||
| TEST_F(TestActivationOpenCL, LeakyReluFp32_dim4) { | |||
| TEST_F(TestActivationOpenCL, ActivationFp32_dim4) { | |||
| MS_LOG(INFO) << "Begin test:"; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->Init(); | |||
| @@ -0,0 +1,155 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include "utils/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/src/common/file_utils.h" | |||
| #include "src/runtime/kernel/arm/nnacl/pack.h" | |||
| #include "mindspore/lite/src/runtime/opencl/opencl_runtime.h" | |||
| #include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h" | |||
| #include "mindspore/lite/src/runtime/kernel/opencl/kernel/caffe_prelu.h" | |||
| #include "mindspore/lite/src/runtime/kernel/arm/nnacl/caffeprelu.h" | |||
| using mindspore::kernel::CaffePReluOpenCLKernel; | |||
| using mindspore::kernel::LiteKernel; | |||
| using mindspore::kernel::SubGraphOpenCLKernel; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_OK; | |||
| namespace mindspore { | |||
| class TestCaffePReluOpenCL : public mindspore::CommonTest {}; | |||
| void LoadDataCaffePRelu(void *dst, size_t dst_size, const std::string &file_path) { | |||
| if (file_path.empty()) { | |||
| memset(dst, 0x00, dst_size); | |||
| } else { | |||
| auto src_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &dst_size)); | |||
| memcpy(dst, src_data, dst_size); | |||
| } | |||
| } | |||
| void CompareOutCaffePRelu(lite::tensor::Tensor *output_tensor, const std::string &standard_answer_file) { | |||
| auto *output_data = reinterpret_cast<float *>(output_tensor->Data()); | |||
| size_t output_size = output_tensor->ElementsC4Num(); | |||
| auto expect_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(standard_answer_file.c_str(), &output_size)); | |||
| constexpr float atol = 0.0002; | |||
| for (int i = 0; i < output_tensor->ElementsC4Num(); ++i) { | |||
| if (std::fabs(output_data[i] - expect_data[i]) > atol) { | |||
| printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]); | |||
| printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]); | |||
| printf("error at idx[%d] expect=%.3f output=%.3f\n\n\n", i, expect_data[i], output_data[i]); | |||
| return; | |||
| } | |||
| } | |||
| printf("compare success!\n"); | |||
| printf("compare success!\n"); | |||
| printf("compare success!\n\n\n"); | |||
| } | |||
| void printf_tensor_caffeprelu(mindspore::lite::tensor::Tensor *in_data, int size) { | |||
| auto input_data = reinterpret_cast<float *>(in_data->Data()); | |||
| for (int i = 0; i < size; ++i) { | |||
| printf("%f ", input_data[i]); | |||
| } | |||
| printf("\n"); | |||
| MS_LOG(INFO) << "Print tensor done"; | |||
| } | |||
| void printf_float(float *data, int num = 0) { | |||
| float *temp = data; | |||
| for (int i = 0; i < num; ++i) { | |||
| std::cout << *temp << " "; | |||
| temp++; | |||
| } | |||
| std::cout << std::endl; | |||
| } | |||
| TEST_F(TestCaffePReluOpenCL, CaffePReluFp32_dim4) { | |||
| std::string in_file = "/data/local/tmp/in_data.bin"; | |||
| std::string weight_file = "/data/local/tmp/weight_data.bin"; | |||
| std::string standard_answer_file = "/data/local/tmp/caffeprelu.bin"; | |||
| MS_LOG(INFO) << "CaffePRelu Begin test:"; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| ocl_runtime->Init(); | |||
| auto allocator = ocl_runtime->GetAllocator(); | |||
| MS_LOG(INFO) << "CaffePRelu init tensors."; | |||
| std::vector<int> input_shape = {1, 4, 3, 9}; | |||
| std::vector<int> output_shape = {1, 4, 3, 9}; | |||
| auto data_type = kNumberTypeFloat32; | |||
| auto tensor_type = schema::NodeType_ValueNode; | |||
| auto *input_tensor = new lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC, tensor_type); | |||
| auto *output_tensor = new lite::tensor::Tensor(data_type, output_shape, schema::Format_NHWC4, tensor_type); | |||
| auto *weight_tensor = | |||
| new lite::tensor::Tensor(data_type, std::vector<int>{input_shape[3]}, schema::Format_NHWC, tensor_type); | |||
| std::vector<lite::tensor::Tensor *> inputs{input_tensor, weight_tensor}; | |||
| std::vector<lite::tensor::Tensor *> outputs{output_tensor}; | |||
| std::cout << input_tensor->ElementsNum() << std::endl; | |||
| std::cout << input_tensor->ElementsC4Num() << std::endl; | |||
| // freamework to do!!! allocate memory by hand | |||
| inputs[0]->MallocData(allocator); | |||
| inputs[1]->MallocData(allocator); | |||
| std::cout << input_tensor->Size() << std::endl; | |||
| LoadDataCaffePRelu(input_tensor->Data(), input_tensor->Size(), in_file); | |||
| MS_LOG(INFO) << "CaffePRelu==================input data================"; | |||
| printf_tensor_caffeprelu(inputs[0], input_tensor->ElementsNum()); | |||
| LoadDataCaffePRelu(weight_tensor->Data(), weight_tensor->Size(), weight_file); | |||
| MS_LOG(INFO) << "CaffePRelu==================weight data================"; | |||
| printf_tensor_caffeprelu(inputs[1], weight_tensor->ElementsNum()); | |||
| auto param = new CaffePReluParameter(); | |||
| param->channel_num_ = input_shape[3]; | |||
| auto *caffeprelu_kernel = | |||
| new (std::nothrow) kernel::CaffePReluOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); | |||
| if (caffeprelu_kernel == nullptr) { | |||
| MS_LOG(ERROR) << "Create caffe prelu kernel error."; | |||
| return; | |||
| } | |||
| auto ret = caffeprelu_kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "caffeprelu_kernel init error."; | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "initialize sub_graph"; | |||
| std::vector<kernel::LiteKernel *> kernels{caffeprelu_kernel}; | |||
| auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel({input_tensor}, outputs, kernels, kernels, kernels); | |||
| if (sub_graph == nullptr) { | |||
| MS_LOG(ERROR) << "Create sub_graph kernel error."; | |||
| return; | |||
| } | |||
| ret = sub_graph->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "sub_graph init error."; | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "Sub graph begin running!"; | |||
| ret = sub_graph->Run(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "sub_graph run error."; | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "CaffePRelu==================output data================"; | |||
| printf_tensor_caffeprelu(outputs[0], output_tensor->ElementsC4Num()); | |||
| std::cout << "output date size:" << output_tensor->Size() << std::endl; | |||
| CompareOutCaffePRelu(output_tensor, standard_answer_file); | |||
| } | |||
| } // namespace mindspore | |||