| @@ -46,6 +46,7 @@ Parameters for both training and evaluating can be set in config.py. | |||||
| "momentum": 0.9, # momentum optimizer | "momentum": 0.9, # momentum optimizer | ||||
| "weight_decay": 1e-4, # weight decay | "weight_decay": 1e-4, # weight decay | ||||
| "epoch_size": 120, # epoch sizes for training | "epoch_size": 120, # epoch sizes for training | ||||
| "pretrain_epoch_size": 0, # epoch size of pretrain checkpoint | |||||
| "buffer_size": 1000, # number of queue size in data preprocessing | "buffer_size": 1000, # number of queue size in data preprocessing | ||||
| "image_height": 224, # image height | "image_height": 224, # image height | ||||
| "image_width": 224, # image width | "image_width": 224, # image width | ||||
| @@ -68,10 +69,10 @@ Parameters for both training and evaluating can be set in config.py. | |||||
| ``` | ``` | ||||
| # distributed training | # distributed training | ||||
| sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] | |||||
| sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional) | |||||
| # standalone training | # standalone training | ||||
| sh run_standalone_train.sh [DATASET_PATH] | |||||
| sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional) | |||||
| ``` | ``` | ||||
| #### Launch | #### Launch | ||||
| @@ -79,9 +80,15 @@ sh run_standalone_train.sh [DATASET_PATH] | |||||
| ```bash | ```bash | ||||
| # distributed training example(8p) | # distributed training example(8p) | ||||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc | sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc | ||||
| If you want to load pretrained ckpt file, | |||||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt | |||||
| # standalone training example(1p) | # standalone training example(1p) | ||||
| sh run_standalone_train.sh dataset/ilsvrc | sh run_standalone_train.sh dataset/ilsvrc | ||||
| f you want to load pretrained ckpt file, | |||||
| sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt | |||||
| ``` | ``` | ||||
| > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). | > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). | ||||
| @@ -24,6 +24,7 @@ config = ed({ | |||||
| "momentum": 0.9, | "momentum": 0.9, | ||||
| "weight_decay": 1e-4, | "weight_decay": 1e-4, | ||||
| "epoch_size": 120, | "epoch_size": 120, | ||||
| "pretrain_epoch_size": 0, | |||||
| "buffer_size": 1000, | "buffer_size": 1000, | ||||
| "image_height": 224, | "image_height": 224, | ||||
| "image_width": 224, | "image_width": 224, | ||||
| @@ -21,7 +21,7 @@ def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): | |||||
| lr = float(init_lr) + lr_inc * current_step | lr = float(init_lr) + lr_inc * current_step | ||||
| return lr | return lr | ||||
| def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch): | |||||
| def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch=120, global_step=0): | |||||
| """ | """ | ||||
| generate learning rate array with cosine | generate learning rate array with cosine | ||||
| @@ -30,6 +30,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch): | |||||
| steps_per_epoch(int): steps size of one epoch | steps_per_epoch(int): steps size of one epoch | ||||
| warmup_epochs(int): number of warmup epochs | warmup_epochs(int): number of warmup epochs | ||||
| max_epoch(int): total epochs of training | max_epoch(int): total epochs of training | ||||
| global_step(int): the current start index of lr array | |||||
| Returns: | Returns: | ||||
| np.array, learning rate array | np.array, learning rate array | ||||
| """ | """ | ||||
| @@ -49,4 +50,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch): | |||||
| decayed = linear_decay * cosine_decay + 0.00001 | decayed = linear_decay * cosine_decay + 0.00001 | ||||
| lr = base_lr * decayed | lr = base_lr * decayed | ||||
| lr_each_step.append(lr) | lr_each_step.append(lr) | ||||
| return np.array(lr_each_step).astype(np.float32) | |||||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||||
| learning_rate = lr_each_step[global_step:] | |||||
| return learning_rate | |||||
| @@ -14,9 +14,9 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| if [ $# != 2 ] | |||||
| if [ $# != 2 ] && [ $# != 3 ] | |||||
| then | then | ||||
| echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]" | |||||
| echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)" | |||||
| exit 1 | exit 1 | ||||
| fi | fi | ||||
| @@ -31,6 +31,11 @@ PATH1=$(get_real_path $1) | |||||
| PATH2=$(get_real_path $2) | PATH2=$(get_real_path $2) | ||||
| echo $PATH1 | echo $PATH1 | ||||
| echo $PATH2 | echo $PATH2 | ||||
| if [ $# == 3 ] | |||||
| then | |||||
| PATH3=$(get_real_path $3) | |||||
| echo $PATH3 | |||||
| fi | |||||
| if [ ! -f $PATH1 ] | if [ ! -f $PATH1 ] | ||||
| then | then | ||||
| @@ -44,6 +49,12 @@ then | |||||
| exit 1 | exit 1 | ||||
| fi | fi | ||||
| if [ $# == 3 ] && [ ! -f $PATH3 ] | |||||
| then | |||||
| echo "error: PRETRAINED_PATH=$PATH3 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | ulimit -u unlimited | ||||
| export DEVICE_NUM=8 | export DEVICE_NUM=8 | ||||
| export RANK_SIZE=8 | export RANK_SIZE=8 | ||||
| @@ -61,6 +72,15 @@ do | |||||
| cd ./train_parallel$i || exit | cd ./train_parallel$i || exit | ||||
| echo "start training for rank $RANK_ID, device $DEVICE_ID" | echo "start training for rank $RANK_ID, device $DEVICE_ID" | ||||
| env > env.log | env > env.log | ||||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||||
| if [ $# == 2 ] | |||||
| then | |||||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||||
| fi | |||||
| if [ $# == 3 ] | |||||
| then | |||||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log & | |||||
| fi | |||||
| cd .. | cd .. | ||||
| done | done | ||||
| @@ -14,9 +14,9 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| if [ $# != 1 ] | |||||
| if [ $# != 1 ] && [ $# != 2 ] | |||||
| then | then | ||||
| echo "Usage: sh run_standalone_train.sh [DATASET_PATH]" | |||||
| echo "Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)" | |||||
| exit 1 | exit 1 | ||||
| fi | fi | ||||
| @@ -29,12 +29,23 @@ get_real_path(){ | |||||
| } | } | ||||
| PATH1=$(get_real_path $1) | PATH1=$(get_real_path $1) | ||||
| echo $PATH1 | echo $PATH1 | ||||
| if [ $# == 2 ] | |||||
| then | |||||
| PATH2=$(get_real_path $2) | |||||
| echo $PATH2 | |||||
| fi | |||||
| if [ ! -d $PATH1 ] | if [ ! -d $PATH1 ] | ||||
| then | then | ||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | echo "error: DATASET_PATH=$PATH1 is not a directory" | ||||
| exit 1 | exit 1 | ||||
| fi | |||||
| fi | |||||
| if [ $# == 2 ] && [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: PRETRAINED_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | ulimit -u unlimited | ||||
| export DEVICE_NUM=1 | export DEVICE_NUM=1 | ||||
| @@ -52,5 +63,13 @@ cp *.sh ./train | |||||
| cd ./train || exit | cd ./train || exit | ||||
| echo "start training for device $DEVICE_ID" | echo "start training for device $DEVICE_ID" | ||||
| env > env.log | env > env.log | ||||
| python train.py --do_train=True --dataset_path=$PATH1 &> log & | |||||
| if [ $# == 1 ] | |||||
| then | |||||
| python train.py --do_train=True --dataset_path=$PATH1 &> log & | |||||
| fi | |||||
| if [ $# == 2 ] | |||||
| then | |||||
| python train.py --do_train=True --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||||
| fi | |||||
| cd .. | cd .. | ||||
| @@ -44,6 +44,7 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | ||||
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | ||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | ||||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | |||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| device_id = int(os.getenv('DEVICE_ID')) | device_id = int(os.getenv('DEVICE_ID')) | ||||
| @@ -64,11 +65,11 @@ if __name__ == '__main__': | |||||
| if isinstance(cell, nn.Conv2d): | if isinstance(cell, nn.Conv2d): | ||||
| cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), | cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), | ||||
| cell.weight.default_input.shape(), | cell.weight.default_input.shape(), | ||||
| cell.weight.default_input.dtype()) | |||||
| cell.weight.default_input.dtype()).to_tensor() | |||||
| if isinstance(cell, nn.Dense): | if isinstance(cell, nn.Dense): | ||||
| cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), | cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), | ||||
| cell.weight.default_input.shape(), | cell.weight.default_input.shape(), | ||||
| cell.weight.default_input.dtype()) | |||||
| cell.weight.default_input.dtype()).to_tensor() | |||||
| if not config.label_smooth: | if not config.label_smooth: | ||||
| config.label_smooth_factor = 0.0 | config.label_smooth_factor = 0.0 | ||||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | ||||
| @@ -77,9 +78,13 @@ if __name__ == '__main__': | |||||
| repeat_num=epoch_size, batch_size=config.batch_size) | repeat_num=epoch_size, batch_size=config.batch_size) | ||||
| step_size = dataset.get_dataset_size() | step_size = dataset.get_dataset_size() | ||||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | ||||
| if args_opt.pre_trained: | |||||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||||
| load_param_into_net(net, param_dict) | |||||
| # learning rate strategy with cosine | # learning rate strategy with cosine | ||||
| lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size)) | |||||
| lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, 120, | |||||
| config.pretrain_epoch_size*step_size)) | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | ||||
| config.weight_decay, config.loss_scale) | config.weight_decay, config.loss_scale) | ||||
| model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False, | model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False, | ||||