|
|
|
@@ -0,0 +1,93 @@ |
|
|
|
/** |
|
|
|
* Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
* |
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
* you may not use this file except in compliance with the License. |
|
|
|
* You may obtain a copy of the License at |
|
|
|
* |
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
* |
|
|
|
* Unless required by applicable law or agreed to in writing, software |
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
* See the License for the specific language governing permissions and |
|
|
|
* limitations under the License. |
|
|
|
*/ |
|
|
|
|
|
|
|
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H |
|
|
|
#define MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H |
|
|
|
|
|
|
|
#include <vector> |
|
|
|
#include "kernel/gpu/gpu_kernel.h" |
|
|
|
#include "kernel/gpu/gpu_kernel_factory.h" |
|
|
|
|
|
|
|
namespace mindspore { |
|
|
|
namespace kernel { |
|
|
|
template <typename T> |
|
|
|
class AssignGpuKernel : public GpuKernel { |
|
|
|
public: |
|
|
|
AssignGpuKernel() : input_size_(0) {} |
|
|
|
~AssignGpuKernel() override = default; |
|
|
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } |
|
|
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } |
|
|
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } |
|
|
|
|
|
|
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, |
|
|
|
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override { |
|
|
|
T *var = GetDeviceAddress<T>(inputs, 0); |
|
|
|
T *value = GetDeviceAddress<T>(inputs, 1); |
|
|
|
T *output = GetDeviceAddress<T>(outputs, 0); |
|
|
|
CHECK_CUDA_RET_WITH_EXCEPT( |
|
|
|
cudaMemcpyAsync(var, value, input_size_, cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), |
|
|
|
"cudaMemxcpyAsync failed."); |
|
|
|
CHECK_CUDA_RET_WITH_EXCEPT( |
|
|
|
cudaMemcpyAsync(output, value, input_size_, cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), |
|
|
|
"cudaMemxcpyAsync failed."); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
bool Init(const CNodePtr &kernel_node) override { |
|
|
|
if (!CheckParam(kernel_node)) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); |
|
|
|
input_size_ = sizeof(T); |
|
|
|
for (size_t x : shape) { |
|
|
|
input_size_ = input_size_ * x; |
|
|
|
} |
|
|
|
InitSizeLists(); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
protected: |
|
|
|
void InitSizeLists() override { |
|
|
|
input_size_list_.push_back(input_size_); |
|
|
|
input_size_list_.push_back(input_size_); |
|
|
|
output_size_list_.push_back(input_size_); |
|
|
|
} |
|
|
|
|
|
|
|
private: |
|
|
|
bool CheckParam(const CNodePtr &kernel_node) { |
|
|
|
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); |
|
|
|
if (input_num != 2) { |
|
|
|
MS_LOG(ERROR) << "Input number is " << input_num << ", but AssignGpuKernel needs 2 output."; |
|
|
|
return false; |
|
|
|
} |
|
|
|
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); |
|
|
|
if (output_num != 1) { |
|
|
|
MS_LOG(ERROR) << "Output number is " << output_num << ", but AssignGpuKernel needs 1 output."; |
|
|
|
return false; |
|
|
|
} |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
std::vector<size_t> input_size_list_; |
|
|
|
std::vector<size_t> output_size_list_; |
|
|
|
std::vector<size_t> workspace_size_list_; |
|
|
|
|
|
|
|
size_t input_size_; |
|
|
|
}; |
|
|
|
} // namespace kernel |
|
|
|
} // namespace mindspore |
|
|
|
|
|
|
|
#endif // MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H |