|
|
|
@@ -21,9 +21,13 @@ from mindspore.ops import functional as F |
|
|
|
from mindspore.ops.primitive import constexpr |
|
|
|
from mindspore._checkparam import Validator as validator |
|
|
|
from mindspore._checkparam import Rel |
|
|
|
from .conv import Conv2d |
|
|
|
from .container import CellList |
|
|
|
from .pooling import AvgPool2d |
|
|
|
from .activation import ReLU |
|
|
|
from ..cell import Cell |
|
|
|
|
|
|
|
__all__ = ['ImageGradients', 'SSIM', 'PSNR', 'CentralCrop'] |
|
|
|
__all__ = ['ImageGradients', 'SSIM', 'MSSSIM', 'PSNR', 'CentralCrop'] |
|
|
|
|
|
|
|
class ImageGradients(Cell): |
|
|
|
r""" |
|
|
|
@@ -83,21 +87,6 @@ def _convert_img_dtype_to_float32(img, max_val): |
|
|
|
ret = ret * scale |
|
|
|
return ret |
|
|
|
|
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _gauss_kernel_helper(filter_size): |
|
|
|
"""gauss kernel helper""" |
|
|
|
filter_size = F.scalar_cast(filter_size, mstype.int32) |
|
|
|
coords = () |
|
|
|
for i in range(filter_size): |
|
|
|
i_cast = F.scalar_cast(i, mstype.float32) |
|
|
|
offset = F.scalar_cast(filter_size-1, mstype.float32)/2.0 |
|
|
|
element = i_cast-offset |
|
|
|
coords = coords+(element,) |
|
|
|
g = np.square(coords).astype(np.float32) |
|
|
|
g = Tensor(g) |
|
|
|
return filter_size, g |
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _check_input_4d(input_shape, param_name, func_name): |
|
|
|
if len(input_shape) != 4: |
|
|
|
@@ -110,9 +99,65 @@ def _check_input_filter_size(input_shape, param_name, filter_size, func_name): |
|
|
|
validator.check(param_name + " shape[2]", input_shape[2], "filter_size", filter_size, Rel.GE, func_name) |
|
|
|
validator.check(param_name + " shape[3]", input_shape[3], "filter_size", filter_size, Rel.GE, func_name) |
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name): |
|
|
|
validator.check_type_name(param_name, input_dtype, allow_dtypes, cls_name) |
|
|
|
def _conv2d(in_channels, out_channels, kernel_size, weight, stride=1, padding=0): |
|
|
|
return Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, |
|
|
|
weight_init=weight, padding=padding, pad_mode="valid") |
|
|
|
|
|
|
|
def _create_window(size, sigma): |
|
|
|
x_data, y_data = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1] |
|
|
|
x_data = np.expand_dims(x_data, axis=-1).astype(np.float32) |
|
|
|
x_data = np.expand_dims(x_data, axis=-1) ** 2 |
|
|
|
y_data = np.expand_dims(y_data, axis=-1).astype(np.float32) |
|
|
|
y_data = np.expand_dims(y_data, axis=-1) ** 2 |
|
|
|
sigma = 2 * sigma ** 2 |
|
|
|
g = np.exp(-(x_data + y_data) / sigma) |
|
|
|
return np.transpose(g / np.sum(g), (2, 3, 0, 1)) |
|
|
|
|
|
|
|
def _split_img(x): |
|
|
|
_, c, _, _ = F.shape(x) |
|
|
|
img_split = P.Split(1, c) |
|
|
|
output = img_split(x) |
|
|
|
return output, c |
|
|
|
|
|
|
|
def _compute_per_channel_loss(c1, c2, img1, img2, conv): |
|
|
|
"""computes ssim index between img1 and img2 per single channel""" |
|
|
|
dot_img = img1 * img2 |
|
|
|
mu1 = conv(img1) |
|
|
|
mu2 = conv(img2) |
|
|
|
mu1_sq = mu1 * mu1 |
|
|
|
mu2_sq = mu2 * mu2 |
|
|
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_tmp = conv(img1 * img1) |
|
|
|
sigma1_sq = sigma1_tmp - mu1_sq |
|
|
|
sigma2_tmp = conv(img2 * img2) |
|
|
|
sigma2_sq = sigma2_tmp - mu2_sq |
|
|
|
sigma12_tmp = conv(dot_img) |
|
|
|
sigma12 = sigma12_tmp - mu1_mu2 |
|
|
|
a = (2 * mu1_mu2 + c1) |
|
|
|
b = (mu1_sq + mu2_sq + c1) |
|
|
|
v1 = 2 * sigma12 + c2 |
|
|
|
v2 = sigma1_sq + sigma2_sq + c2 |
|
|
|
ssim = (a * v1) / (b * v2) |
|
|
|
cs = v1 / v2 |
|
|
|
return ssim, cs |
|
|
|
|
|
|
|
def _compute_multi_channel_loss(c1, c2, img1, img2, conv, concat, mean): |
|
|
|
"""computes ssim index between img1 and img2 per color channel""" |
|
|
|
split_img1, c = _split_img(img1) |
|
|
|
split_img2, _ = _split_img(img2) |
|
|
|
multi_ssim = () |
|
|
|
multi_cs = () |
|
|
|
for i in range(c): |
|
|
|
ssim_per_channel, cs_per_channel = _compute_per_channel_loss(c1, c2, split_img1[i], split_img2[i], conv) |
|
|
|
multi_ssim += (ssim_per_channel,) |
|
|
|
multi_cs += (cs_per_channel,) |
|
|
|
|
|
|
|
multi_ssim = concat(multi_ssim) |
|
|
|
multi_cs = concat(multi_cs) |
|
|
|
|
|
|
|
ssim = mean(multi_ssim, (2, 3)) |
|
|
|
cs = mean(multi_cs, (2, 3)) |
|
|
|
return ssim, cs |
|
|
|
|
|
|
|
class SSIM(Cell): |
|
|
|
r""" |
|
|
|
@@ -157,67 +202,126 @@ class SSIM(Cell): |
|
|
|
self.max_val = max_val |
|
|
|
self.filter_size = validator.check_integer('filter_size', filter_size, 1, Rel.GE, self.cls_name) |
|
|
|
self.filter_sigma = validator.check_float_positive('filter_sigma', filter_sigma, self.cls_name) |
|
|
|
validator.check_value_type('k1', k1, [float], self.cls_name) |
|
|
|
self.k1 = validator.check_number_range('k1', k1, 0.0, 1.0, Rel.INC_NEITHER, self.cls_name) |
|
|
|
validator.check_value_type('k2', k2, [float], self.cls_name) |
|
|
|
self.k2 = validator.check_number_range('k2', k2, 0.0, 1.0, Rel.INC_NEITHER, self.cls_name) |
|
|
|
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size) |
|
|
|
self.k1 = validator.check_value_type('k1', k1, [float], self.cls_name) |
|
|
|
self.k2 = validator.check_value_type('k2', k2, [float], self.cls_name) |
|
|
|
window = _create_window(filter_size, filter_sigma) |
|
|
|
self.conv = _conv2d(1, 1, filter_size, Tensor(window)) |
|
|
|
self.conv.weight.requires_grad = False |
|
|
|
self.reduce_mean = P.ReduceMean() |
|
|
|
self.concat = P.Concat(axis=1) |
|
|
|
|
|
|
|
def construct(self, img1, img2): |
|
|
|
_check_input_dtype(F.dtype(img1), "img1", [mstype.float32, mstype.float16], self.cls_name) |
|
|
|
_check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, self.max_val) |
|
|
|
|
|
|
|
kernel = self._fspecial_gauss(self.filter_size, self.filter_sigma) |
|
|
|
kernel = P.Tile()(kernel, (1, P.Shape()(img1)[1], 1, 1)) |
|
|
|
c1 = (self.k1 * max_val) ** 2 |
|
|
|
c2 = (self.k2 * max_val) ** 2 |
|
|
|
|
|
|
|
ssim_ave_channel, _ = _compute_multi_channel_loss(c1, c2, img1, img2, self.conv, self.concat, self.reduce_mean) |
|
|
|
loss = self.reduce_mean(ssim_ave_channel, -1) |
|
|
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
def _downsample(img1, img2, op): |
|
|
|
a = op(img1) |
|
|
|
b = op(img2) |
|
|
|
return a, b |
|
|
|
|
|
|
|
class MSSSIM(Cell): |
|
|
|
r""" |
|
|
|
Returns MS-SSIM index between img1 and img2. |
|
|
|
|
|
|
|
Its implementation is based on Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik. `Multiscale structural similarity |
|
|
|
for image quality assessment <https://ieeexplore.ieee.org/document/1292216>`_. |
|
|
|
Signals, Systems and Computers, 2004. |
|
|
|
|
|
|
|
mean_ssim = self._calculate_mean_ssim(img1, img2, kernel, max_val, self.k1, self.k2) |
|
|
|
.. math:: |
|
|
|
|
|
|
|
return mean_ssim |
|
|
|
l(x,y)&=\frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1}, C_1=(K_1L)^2.\\ |
|
|
|
c(x,y)&=\frac{2\sigma_x\sigma_y+C_2}{\sigma_x^2+\sigma_y^2+C_2}, C_2=(K_2L)^2.\\ |
|
|
|
s(x,y)&=\frac{\sigma_{xy}+C_3}{\sigma_x\sigma_y+C_3}, C_3=C_2/2.\\ |
|
|
|
MSSSIM(x,y)&=l^alpha_M*{\prod_{1\leq j\leq M} (c^beta_j*s^gamma_j)}. |
|
|
|
|
|
|
|
def _calculate_mean_ssim(self, x, y, kernel, max_val, k1, k2): |
|
|
|
"""calculate mean ssim""" |
|
|
|
c1 = (k1 * max_val) * (k1 * max_val) |
|
|
|
c2 = (k2 * max_val) * (k2 * max_val) |
|
|
|
Args: |
|
|
|
max_val (Union[int, float]): The dynamic range of the pixel values (255 for 8-bit grayscale images). |
|
|
|
Default: 1.0. |
|
|
|
power_factors (Union[tuple, list]): Iterable of weights for each of the scales. |
|
|
|
Default: (0.0448, 0.2856, 0.3001, 0.2363, 0.1333). Default values obtained by Wang et al. |
|
|
|
filter_size (int): The size of the Gaussian filter. Default: 11. |
|
|
|
filter_sigma (float): The standard deviation of Gaussian kernel. Default: 1.5. |
|
|
|
k1 (float): The constant used to generate c1 in the luminance comparison function. Default: 0.01. |
|
|
|
k2 (float): The constant used to generate c2 in the contrast comparison function. Default: 0.03. |
|
|
|
|
|
|
|
# SSIM luminance formula |
|
|
|
# (2 * mean_{x} * mean_{y} + c1) / (mean_{x}**2 + mean_{y}**2 + c1) |
|
|
|
mean_x = self.mean(x, kernel) |
|
|
|
mean_y = self.mean(y, kernel) |
|
|
|
square_sum = F.square(mean_x)+F.square(mean_y) |
|
|
|
luminance = (2*mean_x*mean_y+c1)/(square_sum+c1) |
|
|
|
Inputs: |
|
|
|
- **img1** (Tensor) - The first image batch with format 'NCHW'. It should be the same shape and dtype as img2. |
|
|
|
- **img2** (Tensor) - The second image batch with format 'NCHW'. It should be the same shape and dtype as img1. |
|
|
|
|
|
|
|
# SSIM contrast*structure formula (when c3 = c2/2) |
|
|
|
# (2 * conv_{xy} + c2) / (conv_{xx} + conv_{yy} + c2), equals to |
|
|
|
# (2 * (mean_{xy} - mean_{x}*mean_{y}) + c2) / (mean_{xx}-mean_{x}**2 + mean_{yy}-mean_{y}**2 + c2) |
|
|
|
mean_xy = self.mean(x*y, kernel) |
|
|
|
mean_square_add = self.mean(F.square(x)+F.square(y), kernel) |
|
|
|
Outputs: |
|
|
|
Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1. |
|
|
|
|
|
|
|
cs = (2*(mean_xy-mean_x*mean_y)+c2)/(mean_square_add-square_sum+c2) |
|
|
|
Examples: |
|
|
|
>>> net = nn.MSSSIM(power_factors=(0.033, 0.033, 0.033)) |
|
|
|
>>> img1 = Tensor(np.random.random((1,3,128,128))) |
|
|
|
>>> img2 = Tensor(np.random.random((1,3,128,128))) |
|
|
|
>>> msssim = net(img1, img2) |
|
|
|
""" |
|
|
|
def __init__(self, max_val=1.0, power_factors=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), filter_size=11, |
|
|
|
filter_sigma=1.5, k1=0.01, k2=0.03): |
|
|
|
super(MSSSIM, self).__init__() |
|
|
|
validator.check_value_type('max_val', max_val, [int, float], self.cls_name) |
|
|
|
validator.check_number('max_val', max_val, 0.0, Rel.GT, self.cls_name) |
|
|
|
self.max_val = max_val |
|
|
|
validator.check_value_type('power_factors', power_factors, [tuple, list], self.cls_name) |
|
|
|
self.filter_size = validator.check_integer('filter_size', filter_size, 1, Rel.GE, self.cls_name) |
|
|
|
self.filter_sigma = validator.check_float_positive('filter_sigma', filter_sigma, self.cls_name) |
|
|
|
self.k1 = validator.check_value_type('k1', k1, [float], self.cls_name) |
|
|
|
self.k2 = validator.check_value_type('k2', k2, [float], self.cls_name) |
|
|
|
window = _create_window(filter_size, filter_sigma) |
|
|
|
self.level = len(power_factors) |
|
|
|
self.conv = [] |
|
|
|
for i in range(self.level): |
|
|
|
self.conv.append(_conv2d(1, 1, filter_size, Tensor(window))) |
|
|
|
self.conv[i].weight.requires_grad = False |
|
|
|
self.multi_convs_list = CellList(self.conv) |
|
|
|
self.weight_tensor = Tensor(power_factors, mstype.float32) |
|
|
|
self.avg_pool = AvgPool2d(kernel_size=2, stride=2, pad_mode='valid') |
|
|
|
self.relu = ReLU() |
|
|
|
self.reduce_mean = P.ReduceMean() |
|
|
|
self.prod = P.ReduceProd() |
|
|
|
self.pow = P.Pow() |
|
|
|
self.pack = P.Pack(axis=-1) |
|
|
|
self.concat = P.Concat(axis=1) |
|
|
|
|
|
|
|
# SSIM formula |
|
|
|
# luminance * cs |
|
|
|
ssim = luminance*cs |
|
|
|
def construct(self, img1, img2): |
|
|
|
_check_input_4d(F.shape(img1), "img1", self.cls_name) |
|
|
|
_check_input_4d(F.shape(img2), "img2", self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, self.max_val) |
|
|
|
|
|
|
|
mean_ssim = P.ReduceMean()(ssim, (-3, -2, -1)) |
|
|
|
c1 = (self.k1 * max_val) ** 2 |
|
|
|
c2 = (self.k2 * max_val) ** 2 |
|
|
|
|
|
|
|
return mean_ssim |
|
|
|
sim = () |
|
|
|
mcs = () |
|
|
|
|
|
|
|
def _fspecial_gauss(self, filter_size, filter_sigma): |
|
|
|
"""get gauss kernel""" |
|
|
|
filter_size, g = _gauss_kernel_helper(filter_size) |
|
|
|
for i in range(self.level): |
|
|
|
sim, cs = _compute_multi_channel_loss(c1, c2, img1, img2, |
|
|
|
self.multi_convs_list[i], self.concat, self.reduce_mean) |
|
|
|
mcs += (self.relu(cs),) |
|
|
|
img1, img2 = _downsample(img1, img2, self.avg_pool) |
|
|
|
|
|
|
|
square_sigma_scale = -0.5/(filter_sigma * filter_sigma) |
|
|
|
g = g*square_sigma_scale |
|
|
|
g = F.reshape(g, (1, -1))+F.reshape(g, (-1, 1)) |
|
|
|
g = F.reshape(g, (1, -1)) |
|
|
|
g = P.Softmax()(g) |
|
|
|
ret = F.reshape(g, (1, 1, filter_size, filter_size)) |
|
|
|
return ret |
|
|
|
mcs = mcs[0:-1:1] |
|
|
|
mcs_and_ssim = self.pack(mcs + (self.relu(sim),)) |
|
|
|
mcs_and_ssim = self.pow(mcs_and_ssim, self.weight_tensor) |
|
|
|
ms_ssim = self.prod(mcs_and_ssim, -1) |
|
|
|
loss = self.reduce_mean(ms_ssim, -1) |
|
|
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
class PSNR(Cell): |
|
|
|
r""" |
|
|
|
|