|
|
@@ -96,30 +96,35 @@ class CheckpointConfig: |
|
|
ValueError: If the input_param is None or 0. |
|
|
ValueError: If the input_param is None or 0. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> class Net(nn.Cell): |
|
|
|
|
|
>>> def __init__(self): |
|
|
|
|
|
>>> super(Net, self).__init__() |
|
|
|
|
|
>>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') |
|
|
|
|
|
>>> self.bn = nn.BatchNorm2d(64) |
|
|
|
|
|
|
|
|
>>> class LeNet5(nn.Cell): |
|
|
|
|
|
>>> def __init__(self, num_class=10, num_channel=1): |
|
|
|
|
|
>>> super(LeNet5, self).__init__() |
|
|
|
|
|
>>> self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') |
|
|
|
|
|
>>> self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') |
|
|
|
|
|
>>> self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) |
|
|
|
|
|
>>> self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) |
|
|
|
|
|
>>> self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) |
|
|
>>> self.relu = nn.ReLU() |
|
|
>>> self.relu = nn.ReLU() |
|
|
|
|
|
>>> self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
>>> self.flatten = nn.Flatten() |
|
|
>>> self.flatten = nn.Flatten() |
|
|
>>> self.fc = nn.Dense(64*224*224, 12) |
|
|
|
|
|
>>> |
|
|
>>> |
|
|
>>> def construct(self, x): |
|
|
>>> def construct(self, x): |
|
|
>>> x = self.conv(x) |
|
|
|
|
|
>>> x = self.bn(x) |
|
|
|
|
|
>>> x = self.relu(x) |
|
|
|
|
|
|
|
|
>>> x = self.max_pool2d(self.relu(self.conv1(x))) |
|
|
|
|
|
>>> x = self.max_pool2d(self.relu(self.conv2(x))) |
|
|
>>> x = self.flatten(x) |
|
|
>>> x = self.flatten(x) |
|
|
>>> out = self.fc(x) |
|
|
|
|
|
>>> return out |
|
|
|
|
|
|
|
|
>>> x = self.relu(self.fc1(x)) |
|
|
|
|
|
>>> x = self.relu(self.fc2(x)) |
|
|
|
|
|
>>> x = self.fc3(x) |
|
|
|
|
|
>>> return x |
|
|
>>> |
|
|
>>> |
|
|
>>> net = Net() |
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
|
|
|
|
|
>>> net = LeNet5() |
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') |
|
|
>>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9) |
|
|
>>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9) |
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim) |
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim) |
|
|
>>> dataset = get_dataset() |
|
|
|
|
|
|
|
|
>>> data_path = './MNIST_Data' |
|
|
|
|
|
>>> dataset = create_dataset(data_path) |
|
|
>>> config = CheckpointConfig(saved_network=net) |
|
|
>>> config = CheckpointConfig(saved_network=net) |
|
|
>>> ckpoint_cb = ModelCheckpoint(prefix="ck_prefix", directory='./', config=config) |
|
|
|
|
|
|
|
|
>>> ckpoint_cb = ModelCheckpoint(prefix='LeNet5', directory='./checkpoint', config=config) |
|
|
>>> model.train(10, dataset, callbacks=ckpoint_cb) |
|
|
>>> model.train(10, dataset, callbacks=ckpoint_cb) |
|
|
""" |
|
|
""" |
|
|
def __init__(self, |
|
|
def __init__(self, |
|
|
|