| @@ -0,0 +1,50 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ##############export checkpoint file into mindir model################# | |||||
| python export.py | |||||
| """ | |||||
| import argparse | |||||
| import os | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore import export, load_checkpoint, load_param_into_net | |||||
| from src.config import lstm_cfg as cfg | |||||
| from src.lstm import SentimentNet | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter') | |||||
| parser.add_argument('--preprocess_path', type=str, default='./preprocess', | |||||
| help='path where the pre-process data is stored.') | |||||
| parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.') | |||||
| args = parser.parse_args() | |||||
| embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32) | |||||
| network = SentimentNet(vocab_size=embedding_table.shape[0], | |||||
| embed_size=cfg.embed_size, | |||||
| num_hiddens=cfg.num_hiddens, | |||||
| num_layers=cfg.num_layers, | |||||
| bidirectional=cfg.bidirectional, | |||||
| num_classes=cfg.num_classes, | |||||
| weight=Tensor(embedding_table), | |||||
| batch_size=cfg.batch_size) | |||||
| param_dict = load_checkpoint(args.ckpt_file) | |||||
| load_param_into_net(network, param_dict) | |||||
| input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[64, 500]).astype(np.int32)) | |||||
| export(network, input_arr, file_name="lstm", file_format="MINDIR") | |||||