|
|
|
@@ -24,10 +24,11 @@ from mindspore.ops import composite as C |
|
|
|
|
|
|
|
|
|
|
|
class Batchnorm_Net(Cell): |
|
|
|
def __init__(self, c, weight, bias, moving_mean, moving_var_init): |
|
|
|
def __init__(self, c, weight, bias, moving_mean, moving_var_init, use_batch_statistics=None): |
|
|
|
super(Batchnorm_Net, self).__init__() |
|
|
|
self.bn = BatchNorm2d(c, eps=0.00001, momentum=0.1, beta_init=bias, gamma_init=weight, |
|
|
|
moving_mean_init=moving_mean, moving_var_init=moving_var_init) |
|
|
|
moving_mean_init=moving_mean, moving_var_init=moving_var_init, |
|
|
|
use_batch_statistics=use_batch_statistics) |
|
|
|
|
|
|
|
def construct(self, input_data): |
|
|
|
x = self.bn(input_data) |
|
|
|
@@ -69,7 +70,8 @@ def test_train_forward(): |
|
|
|
error = np.ones(shape=[1, 2, 4, 4]) * 1.0e-4 |
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), |
|
|
|
Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net.set_train() |
|
|
|
output = bn_net(Tensor(x)) |
|
|
|
diff = output.asnumpy() - expect_output |
|
|
|
@@ -77,7 +79,8 @@ def test_train_forward(): |
|
|
|
assert np.all(-diff < error) |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), |
|
|
|
Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net.set_train() |
|
|
|
output = bn_net(Tensor(x)) |
|
|
|
diff = output.asnumpy() - expect_output |
|
|
|
@@ -85,12 +88,14 @@ def test_train_forward(): |
|
|
|
assert np.all(-diff < error) |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), |
|
|
|
Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net.set_train(False) |
|
|
|
output = bn_net(Tensor(x)) |
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), |
|
|
|
Tensor(moving_mean), Tensor(moving_var_init)) |
|
|
|
bn_net.set_train(False) |
|
|
|
output = bn_net(Tensor(x)) |
|
|
|
|
|
|
|
@@ -129,3 +134,47 @@ def test_train_backward(): |
|
|
|
diff = output[0].asnumpy() - expect_output |
|
|
|
assert np.all(diff < error) |
|
|
|
assert np.all(-diff < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_train_stats_false_forward(): |
|
|
|
x = np.array([[ |
|
|
|
[[1, 3, 3, 5], [2, 4, 6, 8], [3, 6, 7, 7], [4, 3, 8, 2]], |
|
|
|
[[5, 7, 6, 3], [3, 5, 6, 7], [9, 4, 2, 5], [7, 5, 8, 1]]]]).astype(np.float32) |
|
|
|
|
|
|
|
expect_output = np.array([[[[3.707105, 5.121315, 5.121315, 6.535525], |
|
|
|
[4.41421, 5.8284197, 7.24263, 8.656839], |
|
|
|
[5.121315, 7.24263, 7.9497347, 7.9497347], |
|
|
|
[5.8284197, 5.121315, 8.656839, 4.41421]], |
|
|
|
|
|
|
|
[[6.535525, 7.9497347, 7.24263, 5.121315], |
|
|
|
[5.121315, 6.535525, 7.24263, 7.9497347], |
|
|
|
[9.363945, 5.8284197, 4.41421, 6.535525], |
|
|
|
[7.9497347, 6.535525, 8.656839, 3.707105]]]]).astype(np.float32) |
|
|
|
|
|
|
|
weight = np.ones(2).astype(np.float32) |
|
|
|
bias = np.ones(2).astype(np.float32) * 3 |
|
|
|
moving_mean = np.zeros(2).astype(np.float32) |
|
|
|
moving_var_init = np.ones(2).astype(np.float32) * 2 |
|
|
|
error = np.ones(shape=[1, 2, 4, 4]) * 1.0e-4 |
|
|
|
use_batch_statistics = False |
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), |
|
|
|
Tensor(moving_var_init), use_batch_statistics) |
|
|
|
bn_net.set_train() |
|
|
|
output = bn_net(Tensor(x)) |
|
|
|
diff = output.asnumpy() - expect_output |
|
|
|
assert np.all(diff < error) |
|
|
|
assert np.all(-diff < error) |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
bn_net = Batchnorm_Net(2, Tensor(weight), Tensor(bias), Tensor(moving_mean), |
|
|
|
Tensor(moving_var_init), use_batch_statistics) |
|
|
|
bn_net.set_train() |
|
|
|
output = bn_net(Tensor(x)) |
|
|
|
diff = output.asnumpy() - expect_output |
|
|
|
assert np.all(diff < error) |
|
|
|
assert np.all(-diff < error) |