| @@ -267,8 +267,6 @@ if(ENABLE_D) | |||
| find_library(REGISTER register ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH}) | |||
| find_library(PLATFORM platform ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH}) | |||
| find_library(OPTILING optiling ${ASCEND_OPP_PATH} ${ASCEND_TOOLKIT_OPP_PATH}) | |||
| find_library(ACL ascendcl ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH}) | |||
| # hccl_adpter | |||
| find_library(HCCL_ADPTER hcom_graph_adaptor ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH}) | |||
| find_library(HCCL_RA ra ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH}) | |||
| @@ -283,7 +281,7 @@ if(ENABLE_D) | |||
| mindspore::protobuf -Wl,--end-group) | |||
| target_link_libraries(mindspore ge_runtime ${CCE_LIB} ${RUNTIME_LIB} ${TSDCLIENT} ${HCCL} ${DATATRANSFER} | |||
| ${HCCL_ADPTER} ${REGISTER} -Wl,--no-as-needed ${OPTILING} ${HCCL_BUILDER} | |||
| ${HCCL_RA} ${PLATFORM} ${ACL}) | |||
| ${HCCL_RA} ${PLATFORM}) | |||
| target_link_libraries(mindspore -Wl,--start-group proto_input mindspore::protobuf -Wl,--end-group) | |||
| elseif(CMAKE_SYSTEM_NAME MATCHES "Windows") | |||
| target_link_libraries(mindspore -Wl,--start-group proto_input mindspore::protobuf mindspore::sentencepiece | |||
| @@ -264,7 +264,7 @@ if(ENABLE_GPUQUE) | |||
| endif() | |||
| if(ENABLE_TDTQUE) | |||
| target_link_libraries(_c_dataengine PRIVATE ${ACL}) | |||
| target_link_libraries(_c_dataengine PRIVATE ${TSDCLIENT}) | |||
| endif() | |||
| add_dependencies(_c_dataengine _c_mindrecord) | |||
| @@ -131,8 +131,8 @@ std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> colum | |||
| #ifndef ENABLE_ANDROID | |||
| // Function to return a transferred Node that transfers data through a device. | |||
| bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32_t device_id, int32_t num_epochs, | |||
| bool send_epoch_end, int32_t total_batches, bool create_data_info_queue) { | |||
| bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32_t num_epochs, bool send_epoch_end, | |||
| int32_t total_batches, bool create_data_info_queue) { | |||
| Status rc; | |||
| // Build and launch tree | |||
| @@ -144,8 +144,8 @@ bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32 | |||
| } | |||
| // Add TransferNode IR on top of dataset | |||
| auto ds = std::make_shared<TransferNode>(shared_from_this()->IRNode(), queue_name, device_type, device_id, | |||
| send_epoch_end, total_batches, create_data_info_queue); | |||
| auto ds = std::make_shared<TransferNode>(shared_from_this()->IRNode(), queue_name, device_type, send_epoch_end, | |||
| total_batches, create_data_info_queue); | |||
| // Get ToDevice consumer | |||
| auto consumer = std::make_unique<ToDevice>(num_epochs); | |||
| @@ -521,10 +521,9 @@ PYBIND_REGISTER(TransferNode, 2, ([](const py::module *m) { | |||
| (void)py::class_<TransferNode, DatasetNode, std::shared_ptr<TransferNode>>(*m, "TransferNode", | |||
| "to create a TransferNode") | |||
| .def(py::init([](std::shared_ptr<DatasetNode> self, std::string queue_name, std::string device_type, | |||
| int32_t device_id, bool send_epoch_end, int32_t total_batch, | |||
| bool create_data_info_queue) { | |||
| auto transfer = std::make_shared<TransferNode>( | |||
| self, queue_name, device_type, device_id, send_epoch_end, total_batch, create_data_info_queue); | |||
| bool send_epoch_end, int32_t total_batch, bool create_data_info_queue) { | |||
| auto transfer = std::make_shared<TransferNode>(self, queue_name, device_type, send_epoch_end, | |||
| total_batch, create_data_info_queue); | |||
| THROW_IF_ERROR(transfer->ValidateParams()); | |||
| return transfer; | |||
| })); | |||
| @@ -55,7 +55,6 @@ DeviceQueueOp::DeviceQueueOp(std::string channel_name, DeviceType device_type, i | |||
| #endif | |||
| #ifdef ENABLE_TDTQUE | |||
| ascend_keep_waiting_ = true; | |||
| tdtInstancePtr = std::make_shared<TdtPlugin>(channel_name_, device_id_); | |||
| #endif | |||
| } | |||
| @@ -153,7 +152,7 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| RETURN_IF_NOT_OK(current_buffer->GetRow(row_id, &currRow)); | |||
| WaitContinueSignal(); | |||
| auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost); | |||
| if (status != Status::OK()) { | |||
| if (status == TdtStatus::FAILED) { | |||
| if (stop_send_) { | |||
| MS_LOG(INFO) << "stop_send received"; | |||
| return Status::OK(); | |||
| @@ -184,9 +183,9 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| } | |||
| if (current_buffer->eoe() && send_epoch_end_) { | |||
| TensorRow currRow; | |||
| auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost, | |||
| ACL_TENSOR_DATA_END_OF_SEQUENCE); | |||
| if (status != Status::OK()) { | |||
| auto status = | |||
| tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost, tdt::TDT_END_OF_SEQUENCE); | |||
| if (status == TdtStatus::FAILED) { | |||
| if (stop_send_) { | |||
| MS_LOG(INFO) << "stop_send received"; | |||
| return Status::OK(); | |||
| @@ -203,6 +202,7 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| } | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| } | |||
| tree_->SetFinished(); | |||
| return Status::OK(); | |||
| @@ -32,20 +32,20 @@ namespace dataset { | |||
| // Constructor for TransferNode | |||
| TransferNode::TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, | |||
| int32_t device_id, bool send_epoch_end, int32_t total_batch, bool create_data_info_queue) | |||
| bool send_epoch_end, int32_t total_batch, bool create_data_info_queue) | |||
| : prefetch_size_(16), | |||
| queue_name_(std::move(queue_name)), | |||
| device_type_(std::move(device_type)), | |||
| send_epoch_end_(send_epoch_end), | |||
| total_batch_(total_batch), | |||
| create_data_info_queue_(create_data_info_queue), | |||
| device_id_(device_id) { | |||
| device_id_(0) { | |||
| this->AddChild(child); | |||
| } | |||
| std::shared_ptr<DatasetNode> TransferNode::Copy() { | |||
| auto node = std::make_shared<TransferNode>(nullptr, queue_name_, device_type_, device_id_, send_epoch_end_, | |||
| total_batch_, create_data_info_queue_); | |||
| auto node = std::make_shared<TransferNode>(nullptr, queue_name_, device_type_, send_epoch_end_, total_batch_, | |||
| create_data_info_queue_); | |||
| return node; | |||
| } | |||
| @@ -96,9 +96,9 @@ Status TransferNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_o | |||
| RETURN_STATUS_UNEXPECTED(err_msg); | |||
| } | |||
| // // Get device ID (shard ID) from children | |||
| // device_id_ = 0; | |||
| // RETURN_IF_NOT_OK(this->GetShardId(&device_id_)); | |||
| // Get device ID (shard ID) from children | |||
| device_id_ = 0; | |||
| RETURN_IF_NOT_OK(this->GetShardId(&device_id_)); | |||
| auto op = std::make_shared<DeviceQueueOp>(queue_name_, type, device_id_, prefetch_size_, send_epoch_end_, | |||
| total_batch_, create_data_info_queue_); | |||
| @@ -29,8 +29,8 @@ namespace dataset { | |||
| class TransferNode : public DatasetNode { | |||
| public: | |||
| /// \brief Constructor | |||
| TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, int32_t device_id, | |||
| bool send_epoch_end, int32_t total_batch, bool create_data_info_queue); | |||
| TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, bool send_epoch_end, | |||
| int32_t total_batch, bool create_data_info_queue); | |||
| /// \brief Destructor | |||
| ~TransferNode() = default; | |||
| @@ -1,6 +1,5 @@ | |||
| file( | |||
| GLOB_RECURSE _CURRENT_SRC_FILES | |||
| RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||
| "*.cc") | |||
| file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc") | |||
| set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD) | |||
| add_library(engine-tdt OBJECT tdt_plugin.cc tdt_handle.cc) | |||
| add_library(engine-tdt OBJECT | |||
| tdt_plugin.cc | |||
| ) | |||
| @@ -1,39 +0,0 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/engine/tdt/tdt_handle.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| std::vector<acltdtChannelHandle *> TdtHandle::acl_handle = std::vector<acltdtChannelHandle *>(); | |||
| void TdtHandle::AddHandle(acltdtChannelHandle *handle) { | |||
| if (handle != nullptr) { | |||
| acl_handle.emplace_back(handle); | |||
| } | |||
| } | |||
| bool TdtHandle::DestroyHandle() { | |||
| for (auto handle : acl_handle) { | |||
| if (handle != nullptr) { | |||
| if (acltdtDestroyChannel(handle) != ACL_SUCCESS) { | |||
| return false; | |||
| } | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -1,38 +0,0 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_ | |||
| #define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_ | |||
| #include <iostream> | |||
| #include <vector> | |||
| #include "acl/acl_tdt.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| class TdtHandle { | |||
| public: | |||
| static void AddHandle(acltdtChannelHandle *handle); | |||
| static bool DestroyHandle(); | |||
| private: | |||
| TdtHandle() {} | |||
| static std::vector<acltdtChannelHandle *> acl_handle; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_ | |||
| @@ -23,138 +23,108 @@ | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| TdtPlugin::TdtPlugin(const std::string &channel_name, int32_t device_id) { | |||
| // create acl tdt handle | |||
| acl_handle_ = acltdtCreateChannel(device_id, channel_name.c_str()); | |||
| if (acl_handle_ == nullptr) { | |||
| MS_LOG(ERROR) << "Failed to create channel for tdt queue."; | |||
| } | |||
| TdtHandle::AddHandle(acl_handle_); | |||
| } | |||
| static std::shared_ptr<TdtPlugin> instance_ptr_ = nullptr; | |||
| TdtPlugin::~TdtPlugin() { | |||
| if (acl_handle_ != nullptr && acltdtDestroyChannel(acl_handle_) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Failed to destroy channel for tdt queue."; | |||
| std::shared_ptr<TdtPlugin> TdtPlugin::GetInstance() { | |||
| if (instance_ptr_ == nullptr) { | |||
| instance_ptr_ = std::shared_ptr<TdtPlugin>(new TdtPlugin); | |||
| } | |||
| return instance_ptr_; | |||
| } | |||
| Status TdtPlugin::hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profiling, int32_t &time, | |||
| acltdtTensorType tdt_type) { | |||
| TdtStatus TdtPlugin::hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profiling, int32_t &time, | |||
| tdt::TdtDataType tdt_type) { | |||
| MS_LOG(DEBUG) << "TDT channel name is " << channel_name << "."; | |||
| acltdtDataset *acl_dataset = nullptr; | |||
| std::vector<DataItem> items; | |||
| double start_time; | |||
| auto ret = translate(tdt_type, ts_row, &acl_dataset); | |||
| if (ret != Status::OK()) { | |||
| DestroyAclDataset(acl_dataset); | |||
| RETURN_STATUS_UNEXPECTED("TDT converting tensor failed!"); | |||
| if (tdt_type == tdt::TDT_TENSOR) { | |||
| auto ret = translate(ts_row, items); | |||
| if (ret != SUCCESS) { | |||
| MS_LOG(ERROR) << "TDT converting tensor failed!"; | |||
| return FAILED; | |||
| } | |||
| } else if (tdt_type == tdt::TDT_END_OF_SEQUENCE) { | |||
| DataItem data_item; | |||
| data_item.dataType_ = tdt::TDT_END_OF_SEQUENCE; | |||
| items.emplace_back(data_item); | |||
| MS_LOG(INFO) << "TDT data type is TDT_END_OF_SEQUENCE"; | |||
| } | |||
| if (profiling) { | |||
| start_time = ProfilingTime::GetCurMilliSecond(); | |||
| } | |||
| #if ENABLE_D | |||
| // Data prefetch only when PS mode enables cache. | |||
| if (acltdtGetDatasetSize(acl_dataset) > 0) { | |||
| acltdtDataItem *item0 = acltdtGetDataItem(acl_dataset, 0); | |||
| if (!ps::PsDataPrefetch::GetInstance().PrefetchData(channel_name, acltdtGetDataAddrFromItem(item0), | |||
| acltdtGetDataSizeFromItem(item0))) { | |||
| RETURN_STATUS_UNEXPECTED("PrefetchData failed in when pre-processing sending data."); | |||
| if (items.size() > 0) { | |||
| if (!ps::PsDataPrefetch::GetInstance().PrefetchData(channel_name, items[0].dataPtr_.get(), items[0].dataLen_)) { | |||
| return FAILED; | |||
| } | |||
| } | |||
| #endif | |||
| auto status = acltdtSendTensor(acl_handle_, acl_dataset, -1); | |||
| DestroyAclDataset(acl_dataset); | |||
| if (status != ACL_SUCCESS) { | |||
| RETURN_STATUS_UNEXPECTED("Tdt Send data failed."); | |||
| if (tdt::TdtHostPushData(channel_name, items) != 0) { | |||
| return FAILED; | |||
| } | |||
| if (profiling) { | |||
| double end_time = ProfilingTime::GetCurMilliSecond(); | |||
| time = (int32_t)(end_time - start_time); | |||
| } | |||
| return Status::OK(); | |||
| return SUCCESS; | |||
| } | |||
| Status TdtPlugin::getTdtType(DataType d_type, aclDataType &datatype) { | |||
| TdtStatus TdtPlugin::getTdtType(DataType d_type, std::string &datatype) { | |||
| switch (d_type.value()) { | |||
| case DataType::DE_BOOL: | |||
| datatype = ACL_BOOL; | |||
| datatype = "bool"; | |||
| break; | |||
| case DataType::DE_INT8: | |||
| datatype = ACL_INT8; | |||
| datatype = "int8"; | |||
| break; | |||
| case DataType::DE_UINT8: | |||
| datatype = ACL_UINT8; | |||
| datatype = "uint8"; | |||
| break; | |||
| case DataType::DE_INT16: | |||
| datatype = ACL_INT16; | |||
| datatype = "int16"; | |||
| break; | |||
| case DataType::DE_UINT16: | |||
| datatype = ACL_UINT16; | |||
| datatype = "uint16"; | |||
| break; | |||
| case DataType::DE_INT32: | |||
| datatype = ACL_INT32; | |||
| datatype = "int32"; | |||
| break; | |||
| case DataType::DE_UINT32: | |||
| datatype = ACL_UINT32; | |||
| datatype = "uint32"; | |||
| break; | |||
| case DataType::DE_FLOAT16: | |||
| datatype = ACL_FLOAT16; | |||
| datatype = "float16"; | |||
| break; | |||
| case DataType::DE_FLOAT32: | |||
| datatype = ACL_FLOAT; | |||
| datatype = "float32"; | |||
| break; | |||
| case DataType::DE_FLOAT64: | |||
| datatype = ACL_DOUBLE; | |||
| datatype = "float64"; | |||
| break; | |||
| case DataType::DE_INT64: | |||
| datatype = ACL_INT64; | |||
| datatype = "int64"; | |||
| break; | |||
| case DataType::DE_UINT64: | |||
| datatype = ACL_UINT64; | |||
| datatype = "uint64"; | |||
| break; | |||
| default: | |||
| RETURN_STATUS_UNEXPECTED("Invalid data, got unexpected data type."); | |||
| return FAILED; | |||
| } | |||
| return Status::OK(); | |||
| return SUCCESS; | |||
| } | |||
| Status TdtPlugin::translate(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset **output_acl_dataset) { | |||
| auto acl_dataset = acltdtCreateDataset(); | |||
| if (acl_dataset == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Create tdt dataset failed."); | |||
| } | |||
| auto status = AssembleTensor2AclDataset(tdt_type, ts_row, acl_dataset); | |||
| if (status != Status::OK()) { | |||
| DestroyAclDataset(acl_dataset); | |||
| RETURN_STATUS_UNEXPECTED("Assemble tensor row to tdt dataset failed."); | |||
| TdtStatus TdtPlugin::translate(const TensorRow &ts_row, std::vector<DataItem> &items) { | |||
| if (ts_row.size() == 0) { | |||
| MS_LOG(ERROR) << "TDT the size of row is zero."; | |||
| return SUCCESS; | |||
| } | |||
| *output_acl_dataset = acl_dataset; | |||
| return Status::OK(); | |||
| } | |||
| Status TdtPlugin::AssembleTensor2AclDataset(acltdtTensorType tdt_type, const TensorRow &ts_row, | |||
| acltdtDataset *acl_dataset) { | |||
| if (tdt_type != ACL_TENSOR_DATA_TENSOR || ts_row.size() == 0) { | |||
| acltdtDataItem *acl_data = acltdtCreateDataItem(tdt_type, nullptr, 0, ACL_BOOL, nullptr, 0); | |||
| if (acl_data == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Create data item failed when send data with type:" + std::to_string(tdt_type)); | |||
| } | |||
| if (acltdtAddDataItem(acl_dataset, acl_data) != ACL_SUCCESS) { | |||
| if (acltdtDestroyDataItem(acl_data) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Destroy data item failed when send data with type: " << tdt_type; | |||
| } | |||
| RETURN_STATUS_UNEXPECTED("Add data item to tdt dataset failed when send data."); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| for (auto ts : ts_row) { | |||
| aclDataType datatype; | |||
| acltdtDataItem *acl_data = nullptr; | |||
| RETURN_IF_NOT_OK(getTdtType(ts->type(), datatype)); | |||
| std::string datatype; | |||
| TdtStatus status = getTdtType(ts->type(), datatype); | |||
| if (status != SUCCESS) { | |||
| return status; | |||
| } | |||
| TensorShape tsShape = ts->shape(); | |||
| std::string dataShapes = "["; | |||
| for (auto dim : tsShape.AsVector()) { | |||
| @@ -162,46 +132,18 @@ Status TdtPlugin::AssembleTensor2AclDataset(acltdtTensorType tdt_type, const Ten | |||
| } | |||
| dataShapes.pop_back(); | |||
| (void)dataShapes.append("]"); | |||
| std::shared_ptr<void> dataPtr = | |||
| DataItem data_item; | |||
| data_item.dataType_ = tdt::TDT_TENSOR; | |||
| data_item.tensorShape_ = dataShapes; | |||
| data_item.tensorType_ = datatype; | |||
| data_item.dataLen_ = ts->SizeInBytes(); | |||
| data_item.dataPtr_ = | |||
| std::shared_ptr<void>(reinterpret_cast<uchar *>(&(*ts->begin<uint8_t>())), [](const void *elem) {}); | |||
| size_t dataLen = ts->SizeInBytes(); | |||
| const dsize_t dims = tsShape.Rank(); | |||
| std::vector<int64_t> dataShape; | |||
| for (auto i = 0; i < dims; i++) { | |||
| dataShape.emplace_back(tsShape[i]); | |||
| } | |||
| acl_data = acltdtCreateDataItem(ACL_TENSOR_DATA_TENSOR, (tsShape.empty() ? nullptr : &dataShape[0]), dims, datatype, | |||
| dataPtr.get(), dataLen); | |||
| if (acl_data == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Create data item failed when send data."); | |||
| } | |||
| if (acltdtAddDataItem(acl_dataset, acl_data) != ACL_SUCCESS) { | |||
| if (acltdtDestroyDataItem(acl_data) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Destroy data item failed when send data with type ACL_TENSOR_DATA_TENSOR."; | |||
| } | |||
| RETURN_STATUS_UNEXPECTED("Add data item to tdt dataset failed when send data."); | |||
| } | |||
| items.emplace_back(data_item); | |||
| MS_LOG(DEBUG) << "TDT data type is TDT_TENSOR, tensor type is " << datatype << ", tensor shape is " << dataShapes | |||
| << ", data length is " << ts->Size() << "."; | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status TdtPlugin::DestroyAclDataset(acltdtDataset *acl_dataset, bool include_data_item) { | |||
| if (include_data_item) { | |||
| for (size_t i = 0; i < acltdtGetDatasetSize(acl_dataset); i++) { | |||
| if (acltdtDestroyDataItem(acltdtGetDataItem(acl_dataset, i)) != ACL_SUCCESS) { | |||
| RETURN_STATUS_UNEXPECTED("Destroy data item failed when send data."); | |||
| } | |||
| } | |||
| } | |||
| if (acltdtDestroyDataset(acl_dataset) != ACL_SUCCESS) { | |||
| RETURN_STATUS_UNEXPECTED("Destroy tdt dataset failed when send data."); | |||
| } | |||
| return Status::OK(); | |||
| return SUCCESS; | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -22,40 +22,33 @@ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| #include "acl/acl_tdt.h" | |||
| #include "minddata/dataset/engine/tdt/tdt_handle.h" | |||
| #include "tdt/tdt_host_interface.h" | |||
| #include "minddata/dataset/core/data_type.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/core/tensor_row.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| enum TdtStatus { SUCCESS, FAILED }; | |||
| using tdt::DataItem; | |||
| class TdtPlugin { | |||
| public: | |||
| static std::shared_ptr<TdtPlugin> GetInstance(); | |||
| Status hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profilig, int32_t &time, | |||
| acltdtTensorType tdt_type = ACL_TENSOR_DATA_TENSOR); | |||
| TdtPlugin(const std::string &channel_name, int32_t device_id); | |||
| ~TdtPlugin(); | |||
| TdtStatus hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profilig, int32_t &time, | |||
| tdt::TdtDataType tdt_type = tdt::TDT_TENSOR); | |||
| private: | |||
| Status DestroyAclDataset(acltdtDataset *acl_dataset, bool include_data_item = true); | |||
| TdtPlugin() {} | |||
| Status AssembleTensor2AclDataset(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset *acl_dataset); | |||
| TdtStatus getTdtType(DataType d_type, std::string &datatype); | |||
| Status getTdtType(DataType d_type, aclDataType &datatype); | |||
| Status translate(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset **output_acl_dataset); | |||
| TdtStatus translate(const TensorRow &ts_row, std::vector<DataItem> &items); | |||
| void *tdt_handle_ = nullptr; | |||
| acltdtChannelHandle *acl_handle_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -152,16 +152,14 @@ class Dataset : public std::enable_shared_from_this<Dataset> { | |||
| /// of data transmission per time is 256M. | |||
| /// \param[in] queue_name Channel name (default="", create new unique name). | |||
| /// \param[in] device_type Type of device (default="", get from MSContext). | |||
| /// \param[in] device_id id of device (default=0, get from MSContext). | |||
| /// \param[in] num_epochs Number of epochs (default=-1, infinite epochs). | |||
| /// \param[in] send_epoch_end Whether to send end of sequence to device or not (default=true). | |||
| /// \param[in] total_batches Number of batches to be sent to the device (default=0, all data). | |||
| /// \param[in] create_data_info_queue Whether to create queue which stores types and shapes | |||
| /// of data or not(default=false). | |||
| /// \return Returns true if no error encountered else false. | |||
| bool DeviceQueue(std::string queue_name = "", std::string device_type = "", int32_t device_id = 0, | |||
| int32_t num_epochs = -1, bool send_epoch_end = true, int32_t total_batches = 0, | |||
| bool create_data_info_queue = false); | |||
| bool DeviceQueue(std::string queue_name = "", std::string device_type = "", int32_t num_epochs = -1, | |||
| bool send_epoch_end = true, int32_t total_batches = 0, bool create_data_info_queue = false); | |||
| /// \brief Function to create a Saver to save the dynamic data processed by the dataset pipeline | |||
| /// \note Usage restrictions: | |||
| @@ -23,9 +23,8 @@ | |||
| #include "minddata/dataset/util/services.h" | |||
| #endif | |||
| #ifdef ENABLE_TDTQUE | |||
| #include "acl/acl_tdt.h" | |||
| #include "tdt/tdt_host_interface.h" | |||
| #include "tdt/status.h" | |||
| #include "minddata/dataset/engine/tdt/tdt_handle.h" | |||
| #endif | |||
| namespace mindspore { | |||
| @@ -164,10 +163,11 @@ Status Task::Join(WaitFlag blocking) { | |||
| if (wait_times > 5 && my_name_.find("DeviceQueueOp") != std::string::npos) { | |||
| MS_LOG(WARNING) << "Wait " << wait_times << " seconds, " | |||
| << "the task: " << my_name_ << " will be destroyed by TdtHostDestory."; | |||
| if (!TdtHandle::DestroyHandle()) { | |||
| MS_LOG(WARNING) << "Destroy tdt channel failed."; | |||
| int32_t destory_status = tdt::TdtHostDestroy(); | |||
| if (destory_status != TDT_OK_CODE) { | |||
| MS_LOG(WARNING) << "Destroy tsd failed, status = " << destory_status << "."; | |||
| } else { | |||
| MS_LOG(INFO) << "Destroy tdt channel success."; | |||
| MS_LOG(INFO) << "Destroy tsd success."; | |||
| } | |||
| // just wait 30 seconds | |||
| @@ -1,6 +1,5 @@ | |||
| file(GLOB_RECURSE DEVICE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "common/*.cc" | |||
| "kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc" | |||
| "memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc" | |||
| "kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc" "memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc" | |||
| ) | |||
| if(ENABLE_GPU) | |||
| @@ -10,8 +9,7 @@ else() | |||
| endif() | |||
| if(ENABLE_D) | |||
| file(GLOB_RECURSE D_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "ascend/*.cc" "kernel_adjust.cc" | |||
| "../../minddata/dataset/engine/tdt/tdt_handle.cc") | |||
| file(GLOB_RECURSE D_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "ascend/*.cc" "kernel_adjust.cc") | |||
| endif() | |||
| if(ENABLE_CPU) | |||
| @@ -54,8 +54,8 @@ | |||
| #include "runtime/device/ascend/profiling/profiling_callback_register.h" | |||
| #include "backend/kernel_compiler/hccl/hccl_context.h" | |||
| #ifdef ENABLE_TDTQUE | |||
| #include "minddata/dataset/engine/tdt/tdt_handle.h" | |||
| using mindspore::dataset::TdtHandle; | |||
| #include "tdt/tdt_host_interface.h" | |||
| #include "tdt/status.h" | |||
| #endif | |||
| using ge::model_runner::ModelRunner; | |||
| @@ -698,10 +698,11 @@ bool AscendKernelRuntime::RunTask(const session::KernelGraph *graph) { | |||
| #ifdef ENABLE_TDTQUE | |||
| // Run task error, we should call TdtHostDestroy to release tdt to avoid DeviceQueueOp hostPush hung | |||
| // case1: cpu usage 100% cause thread/process exit, but some tdt thread remain in backend | |||
| if (!TdtHandle::DestroyHandle()) { | |||
| MS_LOG(WARNING) << "Destroy tdt channel failed."; | |||
| int32_t destory_status = tdt::TdtHostDestroy(); | |||
| if (destory_status != TDT_OK_CODE) { | |||
| MS_LOG(WARNING) << "Destroy tsd failed, status = " << destory_status << "."; | |||
| } else { | |||
| MS_LOG(INFO) << "Destroy tdt channel success."; | |||
| MS_LOG(INFO) << "Destroy tsd success."; | |||
| } | |||
| #endif | |||
| return false; | |||
| @@ -22,6 +22,7 @@ | |||
| #include <atomic> | |||
| #include "pybind11/pybind11.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "utils/convert_utils_base.h" | |||
| @@ -45,7 +46,7 @@ bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr) { | |||
| } | |||
| if (ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF)) { | |||
| MS_LOG(DEBUG) << "ACLTDT Dataset client is already opened."; | |||
| MS_LOG(DEBUG) << "TDT Dataset client is already opened."; | |||
| ms_context_ptr->increase_param<uint32_t>(MS_CTX_TSD_REF); | |||
| return true; | |||
| } | |||
| @@ -55,8 +56,10 @@ bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr) { | |||
| return true; | |||
| } | |||
| uint32_t rank_size = 1; | |||
| uint32_t device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID); | |||
| unsigned int device_id; | |||
| unsigned int rank_size = 1; | |||
| device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID); | |||
| auto rank_size_env = common::GetEnv("RANK_SIZE"); | |||
| if (rank_size_env.empty()) { | |||
| @@ -78,14 +81,14 @@ bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr) { | |||
| } | |||
| ms_context_ptr->increase_param<uint32_t>(MS_CTX_TSD_REF); | |||
| #ifdef ENABLE_TDTQUE | |||
| acltdtChannelHandle *acl_handle = ms_context_ptr->get_acl_tdt_channel_handle(); | |||
| if (acl_handle == nullptr) { | |||
| MS_LOG(EXCEPTION) << "Get acltdt handle failed"; | |||
| int32_t initStatus = tdt::TdtHostInit(device_id); | |||
| if (initStatus != TDT_OK_CODE) { | |||
| MS_LOG(EXCEPTION) << "Init tsd failed, status = " << initStatus << "."; | |||
| return false; | |||
| } | |||
| ms_context_ptr->acl_tdt_print = std::thread(TensorPrint(acl_handle)); | |||
| ms_context_ptr->tdt_print_ = std::thread(TensorPrint()); | |||
| #endif | |||
| MS_LOG(INFO) << "Get the acltdt handle successful, tsd reference = " | |||
| MS_LOG(INFO) << "Open and init tsd successful, tsd reference = " | |||
| << ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF) << "."; | |||
| return true; | |||
| } | |||
| @@ -100,34 +103,28 @@ bool CloseTsd(const std::shared_ptr<MsContext> &ms_context_ptr, bool force) { | |||
| ms_context_ptr->decrease_param<uint32_t>(MS_CTX_TSD_REF); | |||
| if (force || ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF) == 0) { | |||
| ms_context_ptr->set_param<uint32_t>(MS_CTX_TSD_REF, 0); | |||
| #ifdef ENABLE_TDTQUE | |||
| acltdtChannelHandle *acl_handle = ms_context_ptr->get_acl_tdt_channel_handle(); | |||
| aclError stopStatus = acltdtStopChannel(acl_handle); | |||
| if (stopStatus != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Failed stop acl data channel for host queue "; | |||
| } else { | |||
| MS_LOG(INFO) << "Succeed stop acl data channel for host queue "; | |||
| int32_t stopStatus = tdt::TdtHostStop(KNpuLog); | |||
| if (stopStatus != TDT_OK_CODE) { | |||
| MS_LOG(EXCEPTION) << "Stop tsd failed, status = " << stopStatus << "."; | |||
| return false; | |||
| } | |||
| MS_LOG(INFO) << "Succeed run cancellation callback of out-feed dequeue op "; | |||
| py::gil_scoped_release gil_release; | |||
| aclError destrodStatus = acltdtDestroyChannel(acl_handle); | |||
| if (destrodStatus != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Failed destroy acl channel for out-feed dequeue op "; | |||
| } else { | |||
| MS_LOG(INFO) << "Succeed destroy acl channel for out-feed dequeue op "; | |||
| int32_t destroyStatus = tdt::TdtHostDestroy(); | |||
| if (destroyStatus != TDT_OK_CODE) { | |||
| MS_LOG(EXCEPTION) << "Destroy tsd failed, status = " << destroyStatus << "."; | |||
| return false; | |||
| } | |||
| try { | |||
| if (ms_context_ptr->acl_tdt_print.joinable()) { | |||
| MS_LOG(INFO) << "join acl tdt host receive process"; | |||
| ms_context_ptr->acl_tdt_print.join(); | |||
| if (ms_context_ptr->tdt_print_.joinable()) { | |||
| MS_LOG(INFO) << "join tdt host receive process"; | |||
| ms_context_ptr->tdt_print_.join(); | |||
| } | |||
| } catch (const std::exception &e) { | |||
| MS_LOG(ERROR) << "tdt thread join failed: " << e.what(); | |||
| } | |||
| #endif | |||
| uint32_t device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID); | |||
| auto device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID); | |||
| auto ret = rtDeviceReset(device_id); | |||
| if (ret != RT_ERROR_NONE) { | |||
| MS_LOG(EXCEPTION) << "Device " << device_id << " call rtDeviceReset failed, ret[" << static_cast<int>(ret) << "]"; | |||
| @@ -136,9 +133,10 @@ bool CloseTsd(const std::shared_ptr<MsContext> &ms_context_ptr, bool force) { | |||
| ms_context_ptr->set_param<bool>(MS_CTX_IS_PYNATIVE_GE_INIT, false); | |||
| MS_LOG(INFO) << "Call rtDeviceReset, destroy and close tsd successful, ret[" << static_cast<int>(ret) << "]"; | |||
| } else { | |||
| MS_LOG(DEBUG) << "Acltdt Dataset client is used, no need to close, tsd reference = " | |||
| MS_LOG(DEBUG) << "TDT Dataset client is used, no need to close, tsd reference = " | |||
| << ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF) << "."; | |||
| } | |||
| return true; | |||
| } | |||
| #else | |||
| @@ -232,7 +230,7 @@ void GetGeOptions(const std::shared_ptr<MsContext> &ms_context_ptr, std::map<std | |||
| } else { | |||
| (*ge_options)["ge.exec.precision_mode"] = "allow_fp32_to_fp16"; | |||
| } | |||
| // Disable the global variable acc, only enable it while adding training graph in pipeline | |||
| // Disable the global variable acc, only enable it whlie adding training graph in pipeline | |||
| (*ge_options)["ge.exec.variable_acc"] = "0"; | |||
| #endif | |||
| } | |||
| @@ -310,7 +308,6 @@ bool PynativeInitGe(const std::shared_ptr<MsContext> &ms_context_ptr) { | |||
| ms_context_ptr->get_param<uint32_t>(MS_CTX_GE_REF) || ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF)) { | |||
| return true; | |||
| } | |||
| (void)OpenTsd(ms_context_ptr); | |||
| (void)InitGe(ms_context_ptr); | |||
| ms_context_ptr->set_param(MS_CTX_IS_PYNATIVE_GE_INIT, true); | |||
| @@ -24,8 +24,8 @@ | |||
| #include "utils/tensorprint_utils.h" | |||
| #ifndef NO_DLIB | |||
| #include "acl/acl_tdt.h" | |||
| #include "tdt/tsd_client.h" | |||
| #include "tdt/tdt_host_interface.h" | |||
| #include "tdt/data_common.h" | |||
| #include "runtime/dev.h" | |||
| #endif | |||
| @@ -35,8 +35,8 @@ | |||
| namespace mindspore { | |||
| namespace context { | |||
| bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr); | |||
| bool CloseTsd(const std::shared_ptr<MsContext> &ms_context_ptr, bool force = false); | |||
| bool OpenTsd(const std::shared_ptr<MsContext> &inst_context); | |||
| bool CloseTsd(const std::shared_ptr<MsContext> &inst_context, bool force = false); | |||
| void SetHcclOptions(const std::shared_ptr<MsContext> &inst_context, std::map<std::string, std::string> *ge_options); | |||
| void GetGeOptions(const std::shared_ptr<MsContext> &inst_context, std::map<std::string, std::string> *ge_options); | |||
| void SetDisableReuseMemoryFlag(std::map<std::string, std::string> *ge_options); | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -23,48 +23,75 @@ | |||
| #include "pybind11/pybind11.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "utils/shape_utils.h" | |||
| #ifndef NO_DLIB | |||
| #include "tdt/tsd_client.h" | |||
| #include "tdt/tdt_host_interface.h" | |||
| #include "tdt/data_common.h" | |||
| #endif | |||
| namespace py = pybind11; | |||
| namespace mindspore { | |||
| const char kShapeSeperator[] = ","; | |||
| const char kShapeScalar[] = "[0]"; | |||
| const char kShapeNone[] = "[]"; | |||
| static std::map<std::string, TypeId> print_type_map = { | |||
| {"int8_t", TypeId::kNumberTypeInt8}, {"uint8_t", TypeId::kNumberTypeUInt8}, | |||
| {"int16_t", TypeId::kNumberTypeInt16}, {"uint16_t", TypeId::kNumberTypeUInt16}, | |||
| {"int32_t", TypeId::kNumberTypeInt32}, {"uint32_t", TypeId::kNumberTypeUInt32}, | |||
| {"int64_t", TypeId::kNumberTypeInt64}, {"uint64_t", TypeId::kNumberTypeUInt64}, | |||
| {"float16", TypeId::kNumberTypeFloat16}, {"float", TypeId::kNumberTypeFloat32}, | |||
| {"double", TypeId::kNumberTypeFloat64}, {"bool", TypeId::kNumberTypeBool}}; | |||
| #ifndef NO_DLIB | |||
| static std::map<aclDataType, TypeId> print_acl_data_type_map = { | |||
| {ACL_INT8, TypeId::kNumberTypeInt8}, {ACL_UINT8, TypeId::kNumberTypeUInt8}, | |||
| {ACL_INT16, TypeId::kNumberTypeInt16}, {ACL_UINT16, TypeId::kNumberTypeUInt16}, | |||
| {ACL_INT32, TypeId::kNumberTypeInt32}, {ACL_UINT32, TypeId::kNumberTypeUInt32}, | |||
| {ACL_INT64, TypeId::kNumberTypeInt64}, {ACL_UINT64, TypeId::kNumberTypeUInt64}, | |||
| {ACL_FLOAT16, TypeId::kNumberTypeFloat16}, {ACL_FLOAT, TypeId::kNumberTypeFloat32}, | |||
| {ACL_DOUBLE, TypeId::kNumberTypeFloat64}, {ACL_BOOL, TypeId::kNumberTypeBool}}; | |||
| static std::map<std::string, size_t> type_size_map = { | |||
| {"int8_t", sizeof(int8_t)}, {"uint8_t", sizeof(uint8_t)}, {"int16_t", sizeof(int16_t)}, | |||
| {"uint16_t", sizeof(uint16_t)}, {"int32_t", sizeof(int32_t)}, {"uint32_t", sizeof(uint32_t)}, | |||
| {"int64_t", sizeof(int64_t)}, {"uint64_t", sizeof(uint64_t)}, {"float16", sizeof(float) / 2}, | |||
| {"float", sizeof(float)}, {"double", sizeof(double)}, {"bool", sizeof(bool)}}; | |||
| static std::map<aclDataType, size_t> acl_data_type_size_map = { | |||
| {ACL_INT8, sizeof(int8_t)}, {ACL_UINT8, sizeof(uint8_t)}, {ACL_INT16, sizeof(int16_t)}, | |||
| {ACL_UINT16, sizeof(uint16_t)}, {ACL_INT32, sizeof(int32_t)}, {ACL_UINT32, sizeof(uint32_t)}, | |||
| {ACL_INT64, sizeof(int64_t)}, {ACL_UINT64, sizeof(uint64_t)}, {ACL_FLOAT16, sizeof(float) / 2}, | |||
| {ACL_FLOAT, sizeof(float)}, {ACL_DOUBLE, sizeof(double)}, {ACL_BOOL, sizeof(bool)}}; | |||
| std::string GetParseType(const aclDataType &acl_data_type) { | |||
| static const std::map<aclDataType, std::string> print_tensor_parse_map = { | |||
| {ACL_INT8, "Int8"}, {ACL_UINT8, "Uint8"}, {ACL_INT16, "Int16"}, {ACL_UINT16, "Uint16"}, | |||
| {ACL_INT32, "Int32"}, {ACL_UINT32, "Uint32"}, {ACL_INT64, "Int64"}, {ACL_UINT64, "Uint64"}, | |||
| {ACL_FLOAT16, "Float16"}, {ACL_FLOAT, "Float32"}, {ACL_DOUBLE, "Float64"}, {ACL_BOOL, "Bool"}}; | |||
| auto type_iter = print_tensor_parse_map.find(acl_data_type); | |||
| if (type_iter == print_tensor_parse_map.end()) { | |||
| MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << acl_data_type; | |||
| std::string GetParseType(const std::string &tensorType_) { | |||
| static const std::map<std::string, std::string> print_parse_map = { | |||
| {"int8_t", "Int8"}, {"uint8_t", "Uint8"}, {"int16_t", "Int16"}, {"uint16_t", "Uint16"}, | |||
| {"int32_t", "Int32"}, {"uint32_t", "Uint32"}, {"int64_t", "Int64"}, {"uint64_t", "Uint64"}, | |||
| {"float16", "Float16"}, {"float", "Float32"}, {"double", "Float64"}, {"bool", "Bool"}}; | |||
| auto type_iter = print_parse_map.find(tensorType_); | |||
| if (type_iter == print_parse_map.end()) { | |||
| MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << tensorType_; | |||
| } | |||
| return type_iter->second; | |||
| } | |||
| bool ParseTensorShape(const std::string &input_shape_str, ShapeVector *const tensor_shape, size_t *dims) { | |||
| if (tensor_shape == nullptr) { | |||
| return false; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(dims); | |||
| std::string shape_str = input_shape_str; | |||
| if (shape_str.size() <= 2) { | |||
| return false; | |||
| } | |||
| (void)shape_str.erase(shape_str.begin()); | |||
| shape_str.pop_back(); | |||
| shape_str += kShapeSeperator; | |||
| string::size_type pos_begin = 0; | |||
| string::size_type pos_end = shape_str.find(kShapeSeperator); | |||
| while (pos_end != std::string::npos) { | |||
| string dim_str = shape_str.substr(pos_begin, pos_end - pos_begin); | |||
| tensor_shape->emplace_back(std::stoi(dim_str)); | |||
| (*dims) = (*dims) * std::stoul(dim_str); | |||
| pos_begin = pos_end + sizeof(kShapeSeperator) - 1; | |||
| pos_end = shape_str.find(kShapeSeperator, pos_begin); | |||
| } | |||
| return true; | |||
| } | |||
| bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *const print_tensor, | |||
| const size_t &memory_size) { | |||
| MS_EXCEPTION_IF_NULL(str_data_ptr); | |||
| MS_EXCEPTION_IF_NULL(print_tensor); | |||
| auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c()); | |||
| MS_EXCEPTION_IF_NULL(tensor_data_ptr); | |||
| size_t dest_size = static_cast<size_t>(print_tensor->data().nbytes()); | |||
| size_t target_size = memory_size; | |||
| auto cp_ret = memcpy_s(tensor_data_ptr, dest_size, str_data_ptr, target_size); | |||
| auto cp_ret = | |||
| memcpy_s(tensor_data_ptr, static_cast<size_t>(print_tensor->data().nbytes()), str_data_ptr, memory_size); | |||
| if (cp_ret != EOK) { | |||
| MS_LOG(ERROR) << "Print op Failed to copy the memory to py::tensor " << cp_ret; | |||
| return false; | |||
| @@ -73,10 +100,10 @@ bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *co | |||
| } | |||
| template <typename T> | |||
| void PrintScalarToString(const char *str_data_ptr, const aclDataType &acl_data_type, std::ostringstream *const buf) { | |||
| void PrintScalarToString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) { | |||
| MS_EXCEPTION_IF_NULL(str_data_ptr); | |||
| MS_EXCEPTION_IF_NULL(buf); | |||
| *buf << "Tensor(shape=[], dtype=" << GetParseType(acl_data_type) << ", value="; | |||
| *buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value="; | |||
| const T *data_ptr = reinterpret_cast<const T *>(str_data_ptr); | |||
| if constexpr (std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value) { | |||
| const int int_data = static_cast<int>(*data_ptr); | |||
| @@ -86,12 +113,11 @@ void PrintScalarToString(const char *str_data_ptr, const aclDataType &acl_data_t | |||
| } | |||
| } | |||
| void PrintScalarToBoolString(const char *str_data_ptr, const aclDataType &acl_data_type, | |||
| std::ostringstream *const buf) { | |||
| void PrintScalarToBoolString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) { | |||
| MS_EXCEPTION_IF_NULL(str_data_ptr); | |||
| MS_EXCEPTION_IF_NULL(buf); | |||
| const bool *data_ptr = reinterpret_cast<const bool *>(str_data_ptr); | |||
| *buf << "Tensor(shape=[], dtype=" << GetParseType(acl_data_type) << ", value="; | |||
| *buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value="; | |||
| if (*data_ptr) { | |||
| *buf << "True)\n"; | |||
| } else { | |||
| @@ -99,99 +125,89 @@ void PrintScalarToBoolString(const char *str_data_ptr, const aclDataType &acl_da | |||
| } | |||
| } | |||
| void convertDataItem2Scalar(const char *str_data_ptr, const aclDataType &acl_data_type, std::ostringstream *const buf) { | |||
| void convertDataItem2Scalar(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) { | |||
| MS_EXCEPTION_IF_NULL(str_data_ptr); | |||
| MS_EXCEPTION_IF_NULL(buf); | |||
| auto type_iter = print_acl_data_type_map.find(acl_data_type); | |||
| auto type_iter = print_type_map.find(tensor_type); | |||
| auto type_id = type_iter->second; | |||
| if (type_id == TypeId::kNumberTypeBool) { | |||
| PrintScalarToBoolString(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToBoolString(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeInt8) { | |||
| PrintScalarToString<int8_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<int8_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeUInt8) { | |||
| PrintScalarToString<uint8_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<uint8_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeInt16) { | |||
| PrintScalarToString<int16_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<int16_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeUInt16) { | |||
| PrintScalarToString<uint16_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<uint16_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeInt32) { | |||
| PrintScalarToString<int32_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<int32_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeUInt32) { | |||
| PrintScalarToString<uint32_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<uint32_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeInt64) { | |||
| PrintScalarToString<int64_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<int64_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeUInt64) { | |||
| PrintScalarToString<uint64_t>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<uint64_t>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeFloat16) { | |||
| PrintScalarToString<float16>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<float16>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeFloat32) { | |||
| PrintScalarToString<float>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<float>(str_data_ptr, tensor_type, buf); | |||
| } else if (type_id == TypeId::kNumberTypeFloat64) { | |||
| PrintScalarToString<double>(str_data_ptr, acl_data_type, buf); | |||
| PrintScalarToString<double>(str_data_ptr, tensor_type, buf); | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << GetParseType(acl_data_type) << "."; | |||
| MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << tensor_type << "."; | |||
| } | |||
| } | |||
| bool judgeLengthValid(const size_t str_len, const aclDataType &acl_data_type) { | |||
| auto type_iter = acl_data_type_size_map.find(acl_data_type); | |||
| if (type_iter == acl_data_type_size_map.end()) { | |||
| bool judgeLengthValid(const size_t str_len, const string &tensor_type) { | |||
| auto type_iter = type_size_map.find(tensor_type); | |||
| if (type_iter == type_size_map.end()) { | |||
| MS_LOG(EXCEPTION) << "type of scalar to print is not support."; | |||
| } | |||
| return str_len == type_iter->second; | |||
| } | |||
| bool ConvertDataset2Tensor(acltdtDataset *acl_dataset) { | |||
| #ifndef NO_DLIB | |||
| bool ConvertDataItem2Tensor(const std::vector<tdt::DataItem> &items) { | |||
| // Acquire Python GIL | |||
| py::gil_scoped_acquire gil_acquire; | |||
| std::ostringstream buf; | |||
| bool ret_end_sequence = false; | |||
| size_t acl_dataset_size = acltdtGetDatasetSize(acl_dataset); | |||
| for (size_t i = 0; i < acl_dataset_size; i++) { | |||
| acltdtDataItem *item = acltdtGetDataItem(acl_dataset, i); | |||
| if (acltdtGetTensorTypeFromItem(item) == ACL_TENSOR_DATA_END_OF_SEQUENCE) { | |||
| for (auto &item : items) { | |||
| if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) { | |||
| ret_end_sequence = true; | |||
| MS_LOG(INFO) << "end of sequence" << std::endl; | |||
| break; | |||
| } | |||
| size_t dim_num = acltdtGetDimNumFromItem(item); | |||
| void *acl_addr = acltdtGetDataAddrFromItem(item); | |||
| size_t acl_data_size = acltdtGetDataSizeFromItem(item); | |||
| aclDataType acl_data_type = acltdtGetDataTypeFromItem(item); | |||
| char *acl_data = reinterpret_cast<char *>(acl_addr); | |||
| acl_data = const_cast<char *>(reinterpret_cast<std::string *>(acl_data)->c_str()); | |||
| MS_EXCEPTION_IF_NULL(acl_data); | |||
| ShapeVector tensorShape; | |||
| tensorShape.resize(dim_num); | |||
| if (acltdtGetDimsFromItem(item, tensorShape.data(), dim_num) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "ACL failed get dim-size from acl channel data"; | |||
| } | |||
| if ((tensorShape.size() == 1 && tensorShape[0] == 0) || tensorShape.size() == 0) { | |||
| if (!judgeLengthValid(acl_data_size, acl_data_type)) { | |||
| std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_); | |||
| MS_EXCEPTION_IF_NULL(str_data_ptr); | |||
| if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) { | |||
| if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) { | |||
| MS_LOG(EXCEPTION) << "Print op receive data length is invalid."; | |||
| } | |||
| convertDataItem2Scalar(acl_data, acl_data_type, &buf); | |||
| convertDataItem2Scalar(str_data_ptr->data(), item.tensorType_, &buf); | |||
| continue; | |||
| } | |||
| ShapeVector tensor_shape; | |||
| size_t totaldims = 1; | |||
| if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) { | |||
| MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_; | |||
| continue; | |||
| } | |||
| if (acl_data_type == ACL_STRING) { | |||
| std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size); | |||
| if (item.tensorType_ == "string") { | |||
| std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_); | |||
| buf << data << std::endl; | |||
| } else { | |||
| auto type_iter = print_acl_data_type_map.find(acl_data_type); | |||
| if (type_iter == print_acl_data_type_map.end()) { | |||
| MS_LOG(ERROR) << "type of tensor need to print is not support " << GetParseType(acl_data_type); | |||
| auto type_iter = print_type_map.find(item.tensorType_); | |||
| if (type_iter == print_type_map.end()) { | |||
| MS_LOG(ERROR) << "type of tensor need to print is not support " << item.tensorType_; | |||
| continue; | |||
| } | |||
| auto type_id = type_iter->second; | |||
| mindspore::tensor::Tensor print_tensor(type_id, tensorShape); | |||
| if (PrintTensorToString(acl_data, &print_tensor, acl_data_size)) { | |||
| mindspore::tensor::Tensor print_tensor(type_id, tensor_shape); | |||
| auto memory_size = totaldims * type_size_map[item.tensorType_]; | |||
| if (PrintTensorToString(str_data_ptr->data(), &print_tensor, memory_size)) { | |||
| buf << print_tensor.ToStringNoLimit() << std::endl; | |||
| } | |||
| } | |||
| @@ -200,63 +216,44 @@ bool ConvertDataset2Tensor(acltdtDataset *acl_dataset) { | |||
| return ret_end_sequence; | |||
| } | |||
| bool SaveDataset2File(acltdtDataset *acl_dataset, const std::string &print_file_path, prntpb::Print print, | |||
| std::fstream *output) { | |||
| bool SaveDataItem2File(const std::vector<tdt::DataItem> &items, const std::string &print_file_path, prntpb::Print print, | |||
| std::fstream *output) { | |||
| bool ret_end_thread = false; | |||
| for (size_t i = 0; i < acltdtGetDatasetSize(acl_dataset); i++) { | |||
| acltdtDataItem *item = acltdtGetDataItem(acl_dataset, i); | |||
| MS_EXCEPTION_IF_NULL(item); | |||
| acltdtTensorType acl_tensor_type = acltdtGetTensorTypeFromItem(item); | |||
| if (acl_tensor_type == ACL_TENSOR_DATA_END_OF_SEQUENCE) { | |||
| MS_LOG(INFO) << "Acl channel received end-of-sequence for print op."; | |||
| for (auto &item : items) { | |||
| if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) { | |||
| ret_end_thread = true; | |||
| break; | |||
| } else if (acl_tensor_type == ACL_TENSOR_DATA_ABNORMAL) { | |||
| MS_LOG(INFO) << "Acl channel received abnormal for print op."; | |||
| return true; | |||
| } else if (acl_tensor_type == ACL_TENSOR_DATA_UNDEFINED) { | |||
| MS_LOG(INFO) << "Acl channel received undefined message type for print op."; | |||
| return false; | |||
| } | |||
| prntpb::Print_Value *value = print.add_value(); | |||
| size_t dim_num = acltdtGetDimNumFromItem(item); | |||
| void *acl_addr = acltdtGetDataAddrFromItem(item); | |||
| size_t acl_data_size = acltdtGetDataSizeFromItem(item); | |||
| aclDataType acl_data_type = acltdtGetDataTypeFromItem(item); | |||
| char *acl_data = reinterpret_cast<char *>(acl_addr); | |||
| MS_EXCEPTION_IF_NULL(acl_data); | |||
| ShapeVector tensorShape; | |||
| tensorShape.resize(dim_num); | |||
| if (acltdtGetDimsFromItem(item, tensorShape.data(), dim_num) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "ACL failed get dim-size from acl channel data"; | |||
| } | |||
| if ((tensorShape.size() == 1 && tensorShape[0] == 0) || tensorShape.size() == 0) { | |||
| if (!judgeLengthValid(acl_data_size, acl_data_type)) { | |||
| std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_); | |||
| MS_EXCEPTION_IF_NULL(str_data_ptr); | |||
| if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) { | |||
| if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) { | |||
| MS_LOG(ERROR) << "Print op receive data length is invalid."; | |||
| ret_end_thread = true; | |||
| } | |||
| } | |||
| if (acl_data_type == ACL_STRING) { | |||
| std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size); | |||
| ShapeVector tensor_shape; | |||
| size_t totaldims = 1; | |||
| if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) { | |||
| MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_; | |||
| ret_end_thread = true; | |||
| } | |||
| if (item.tensorType_ == "string") { | |||
| std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_); | |||
| value->set_desc(data); | |||
| } else { | |||
| auto parse_type = GetParseType(acl_data_type); | |||
| auto parse_type = GetParseType(item.tensorType_); | |||
| prntpb::TensorProto *tensor = value->mutable_tensor(); | |||
| if (tensorShape.size() > 1 || (tensorShape.size() == 1 && tensorShape[0] != 1)) { | |||
| for (const auto &dim : tensorShape) { | |||
| if (!(item.tensorShape_ == kShapeScalar) && !(item.tensorShape_ == kShapeNone)) { | |||
| for (const auto &dim : tensor_shape) { | |||
| tensor->add_dims(static_cast<::google::protobuf::int64>(dim)); | |||
| } | |||
| } | |||
| tensor->set_tensor_type(parse_type); | |||
| std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size); | |||
| std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_); | |||
| tensor->set_tensor_content(data); | |||
| } | |||
| @@ -277,37 +274,29 @@ void TensorPrint::operator()() { | |||
| std::string print_file_path = ms_context->get_param<std::string>(MS_CTX_PRINT_FILE_PATH); | |||
| if (print_file_path == "") { | |||
| while (true) { | |||
| acltdtDataset *acl_dataset = acltdtCreateDataset(); | |||
| if (acl_dataset == nullptr) { | |||
| MS_LOG(ERROR) << "Failed create acl dateaset."; | |||
| } | |||
| if (acltdtReceiveTensor(acl_handle_, acl_dataset, -1 /* no timeout */) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Acltdt receive tensor failed"; | |||
| std::vector<tdt::DataItem> bundle; | |||
| if (tdt::TdtHostPopData("_npu_log", bundle) != 0) { | |||
| break; | |||
| } | |||
| if (ConvertDataset2Tensor(acl_dataset)) { | |||
| if (ConvertDataItem2Tensor(bundle)) { | |||
| break; | |||
| } | |||
| } | |||
| } else { | |||
| std::fstream output(print_file_path, std::ios::out | std::ios::trunc | std::ios::binary); | |||
| while (true) { | |||
| acltdtDataset *acl_dataset = acltdtCreateDataset(); | |||
| if (acl_dataset == nullptr) { | |||
| MS_LOG(ERROR) << "Failed create acl dateaset."; | |||
| } | |||
| if (acltdtReceiveTensor(acl_handle_, acl_dataset, -1 /* no timeout */) != ACL_SUCCESS) { | |||
| MS_LOG(ERROR) << "Acltdt receive tensor failed"; | |||
| std::vector<tdt::DataItem> bundle; | |||
| if (tdt::TdtHostPopData("_npu_log", bundle) != 0) { | |||
| break; | |||
| } | |||
| if (SaveDataset2File(acl_dataset, print_file_path, print, &output)) { | |||
| if (SaveDataItem2File(bundle, print_file_path, print, &output)) { | |||
| break; | |||
| } | |||
| } | |||
| output.close(); | |||
| std::string path_string = print_file_path; | |||
| if (chmod(common::SafeCStr(path_string), S_IRUSR) == -1) { | |||
| MS_LOG(ERROR) << "Modify file:" << print_file_path << " to fail."; | |||
| MS_LOG(ERROR) << "Modify file:" << print_file_path << " to r fail."; | |||
| return; | |||
| } | |||
| } | |||
| @@ -20,10 +20,9 @@ | |||
| #include <map> | |||
| #include "ir/dtype/type.h" | |||
| #ifndef NO_DLIB | |||
| #include "acl/acl_tdt.h" | |||
| #include "tdt/tsd_client.h" | |||
| #include "tdt/data_common.h" | |||
| #include "tdt/tdt_host_interface.h" | |||
| #include "tdt/data_common.h" | |||
| #include "proto/print.pb.h" | |||
| #include "utils/ms_context.h" | |||
| #endif | |||
| @@ -33,11 +32,7 @@ class TensorPrint { | |||
| TensorPrint() {} | |||
| ~TensorPrint() = default; | |||
| #ifndef NO_DLIB | |||
| explicit TensorPrint(acltdtChannelHandle *acl_handle) { acl_handle_ = acl_handle; } | |||
| void operator()(); | |||
| private: | |||
| acltdtChannelHandle *acl_handle_ = nullptr; | |||
| #endif | |||
| }; | |||
| } // namespace mindspore | |||
| @@ -50,7 +50,6 @@ MsContext::MsContext(const std::string &policy, const std::string &target) { | |||
| } else { | |||
| set_param<uint32_t>(MS_CTX_DEVICE_ID, 0); | |||
| } | |||
| set_param<uint32_t>(MS_CTX_MAX_CALL_DEPTH, MAX_CALL_DEPTH_DEFAULT); | |||
| set_param<std::string>(MS_CTX_DEVICE_TARGET, target); | |||
| set_param<int>(MS_CTX_EXECUTION_MODE, kPynativeMode); | |||
| @@ -108,22 +107,4 @@ std::string MsContext::backend_policy() const { | |||
| } | |||
| return "unknown"; | |||
| } | |||
| #ifdef ENABLE_TDTQUE | |||
| acltdtChannelHandle *MsContext::get_acl_tdt_channel_handle() { | |||
| if (acl_handle == nullptr) { | |||
| std::string kReceivePrefix = "TF_RECEIVE_"; | |||
| std::string channel_name = "_npu_log"; | |||
| uint32_t device_id = get_param<uint32_t>(MS_CTX_DEVICE_ID); | |||
| acl_handle = acltdtCreateChannel(device_id, (kReceivePrefix + channel_name).c_str()); | |||
| if (acl_handle == nullptr) { | |||
| MS_LOG(ERROR) << "Failed to create acltdt handle : " << channel_name; | |||
| return nullptr; | |||
| } | |||
| MS_LOG(INFO) << "Success to create acltdt handle: " << channel_name; | |||
| return acl_handle; | |||
| } | |||
| return acl_handle; | |||
| } | |||
| #endif | |||
| } // namespace mindspore | |||
| @@ -24,10 +24,7 @@ | |||
| #include <string> | |||
| #include <utility> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #ifndef NO_DLIB | |||
| #include "acl/acl_tdt.h" | |||
| #endif | |||
| namespace mindspore { | |||
| enum MsBackendPolicy { | |||
| kMsBackendGeOnly = 0, | |||
| @@ -132,13 +129,11 @@ class MsContext { | |||
| std::string backend_policy() const; | |||
| bool set_backend_policy(const std::string &policy); | |||
| #ifdef ENABLE_TDTQUE | |||
| acltdtChannelHandle *get_acl_tdt_channel_handle(); | |||
| #endif | |||
| static void device_seter(DeviceSeter device) { seter_ = device; } | |||
| static void device_type_seter(DeviceTypeSeter device_type) { device_type_seter_ = device_type; } | |||
| std::thread acl_tdt_print; | |||
| std::thread tdt_print_; | |||
| template <typename T> | |||
| void set_param(MsCtxParam param, const T &value) { | |||
| @@ -173,9 +168,6 @@ class MsContext { | |||
| std::string string_params_[MsCtxParam::NUM_STRING_PARAMS]; | |||
| MsBackendPolicy backend_policy_; | |||
| #ifdef ENABLE_TDTQUE | |||
| acltdtChannelHandle *acl_handle = nullptr; | |||
| #endif | |||
| }; | |||
| // set method implementation for type bool/int/uint32_t/float/std::string | |||
| @@ -2698,11 +2698,10 @@ class TransferDataset(Dataset): | |||
| def parse(self, children=None): | |||
| total_batch = 0 | |||
| device_id = context.get_context("device_id") | |||
| if hasattr(self.children[0], "__total_batch__"): | |||
| total_batch = self.children[0].__total_batch__ | |||
| return cde.TransferNode(children[0], self.queue_name, self.device_type, device_id, self._send_epoch_end, | |||
| total_batch, self._create_data_info_queue) | |||
| return cde.TransferNode(children[0], self.queue_name, self.device_type, self._send_epoch_end, total_batch, | |||
| self._create_data_info_queue) | |||
| def create_dict_iterator(self, num_epochs=-1, output_numpy=False): | |||
| raise RuntimeError("TransferDataset is not iterable.") | |||
| @@ -54,20 +54,15 @@ def get_tensor(is_scalar, input_type): | |||
| if __name__ == "__main__": | |||
| net = TensorPrint() | |||
| # net(get_tensor('scalar', mindspore.bool_), get_tensor('scalar', mindspore.uint8), | |||
| # get_tensor('scalar', mindspore.int8), get_tensor('scalar', mindspore.uint16), | |||
| # get_tensor('scalar', mindspore.int16), get_tensor('scalar', mindspore.uint32), | |||
| # get_tensor('scalar', mindspore.int32), get_tensor('scalar', mindspore.uint64), | |||
| # get_tensor('scalar', mindspore.int64), get_tensor('scalar', mindspore.float16), | |||
| # get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64), | |||
| # get_tensor('array', mindspore.bool_), get_tensor('array', mindspore.uint8), | |||
| # get_tensor('array', mindspore.int8), get_tensor('array', mindspore.uint16), | |||
| # get_tensor('array', mindspore.int16), get_tensor('array', mindspore.uint32), | |||
| # get_tensor('array', mindspore.int32), get_tensor('array', mindspore.uint64), | |||
| # get_tensor('array', mindspore.int64), get_tensor('array', mindspore.float16), | |||
| # get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64)) | |||
| net(get_tensor('scalar', mindspore.bool_), | |||
| net(get_tensor('scalar', mindspore.bool_), get_tensor('scalar', mindspore.uint8), | |||
| get_tensor('scalar', mindspore.int8), get_tensor('scalar', mindspore.uint16), | |||
| get_tensor('scalar', mindspore.int16), get_tensor('scalar', mindspore.uint32), | |||
| get_tensor('scalar', mindspore.int32), get_tensor('scalar', mindspore.uint64), | |||
| get_tensor('scalar', mindspore.int64), get_tensor('scalar', mindspore.float16), | |||
| get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64), | |||
| get_tensor('array', mindspore.bool_), | |||
| get_tensor('array', mindspore.bool_), get_tensor('array', mindspore.uint8), | |||
| get_tensor('array', mindspore.int8), get_tensor('array', mindspore.uint16), | |||
| get_tensor('array', mindspore.int16), get_tensor('array', mindspore.uint32), | |||
| get_tensor('array', mindspore.int32), get_tensor('array', mindspore.uint64), | |||
| get_tensor('array', mindspore.int64), get_tensor('array', mindspore.float16), | |||
| get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64)) | |||