|
|
|
@@ -21,6 +21,7 @@ |
|
|
|
#include "util/status.h" |
|
|
|
#include "core/session.h" |
|
|
|
#include "core/http_process.h" |
|
|
|
#include "core/serving_tensor.h" |
|
|
|
|
|
|
|
using ms_serving::MSService; |
|
|
|
using ms_serving::PredictReply; |
|
|
|
@@ -35,10 +36,9 @@ static constexpr char HTTP_DATA[] = "data"; |
|
|
|
static constexpr char HTTP_TENSOR[] = "tensor"; |
|
|
|
enum HTTP_TYPE { TYPE_DATA = 0, TYPE_TENSOR }; |
|
|
|
enum HTTP_DATA_TYPE { HTTP_DATA_NONE, HTTP_DATA_INT, HTTP_DATA_FLOAT }; |
|
|
|
static const std::map<HTTP_DATA_TYPE, ms_serving::DataType> http_to_infer_map{ |
|
|
|
{HTTP_DATA_NONE, ms_serving::MS_UNKNOWN}, |
|
|
|
{HTTP_DATA_INT, ms_serving::MS_INT32}, |
|
|
|
{HTTP_DATA_FLOAT, ms_serving::MS_FLOAT32}}; |
|
|
|
|
|
|
|
static const std::map<inference::DataType, HTTP_DATA_TYPE> infer_type2_http_type{ |
|
|
|
{inference::DataType::kMSI_Int32, HTTP_DATA_INT}, {inference::DataType::kMSI_Float32, HTTP_DATA_FLOAT}}; |
|
|
|
|
|
|
|
Status GetPostMessage(struct evhttp_request *req, std::string *buf) { |
|
|
|
Status status(SUCCESS); |
|
|
|
@@ -93,69 +93,96 @@ Status CheckMessageValid(const json &message_info, HTTP_TYPE *type) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
Status GetDataFromJson(const json &json_data, std::string *data, HTTP_DATA_TYPE *type) { |
|
|
|
Status GetDataFromJson(const json &json_data_array, ServingTensor *request_tensor, size_t data_index, |
|
|
|
HTTP_DATA_TYPE type) { |
|
|
|
Status status(SUCCESS); |
|
|
|
if (json_data.is_number_integer()) { |
|
|
|
if (*type == HTTP_DATA_NONE) { |
|
|
|
*type = HTTP_DATA_INT; |
|
|
|
} else if (*type != HTTP_DATA_INT) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input data type should be consistent"); |
|
|
|
return status; |
|
|
|
auto type_name = [](const json &json_data) -> std::string { |
|
|
|
if (json_data.is_number_integer()) { |
|
|
|
return "integer"; |
|
|
|
} else if (json_data.is_number_float()) { |
|
|
|
return "float"; |
|
|
|
} |
|
|
|
auto s_data = json_data.get<int32_t>(); |
|
|
|
data->append(reinterpret_cast<char *>(&s_data), sizeof(int32_t)); |
|
|
|
} else if (json_data.is_number_float()) { |
|
|
|
if (*type == HTTP_DATA_NONE) { |
|
|
|
*type = HTTP_DATA_FLOAT; |
|
|
|
} else if (*type != HTTP_DATA_FLOAT) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input data type should be consistent"); |
|
|
|
return status; |
|
|
|
return json_data.type_name(); |
|
|
|
}; |
|
|
|
size_t array_size = json_data_array.size(); |
|
|
|
if (type == HTTP_DATA_INT) { |
|
|
|
auto data = reinterpret_cast<int32_t *>(request_tensor->mutable_data()) + data_index; |
|
|
|
for (size_t k = 0; k < array_size; k++) { |
|
|
|
auto &json_data = json_data_array[k]; |
|
|
|
if (!json_data.is_number_integer()) { |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) << "get data failed, expected integer, given " << type_name(json_data); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
data[k] = json_data.get<int32_t>(); |
|
|
|
} |
|
|
|
} else if (type == HTTP_DATA_FLOAT) { |
|
|
|
auto data = reinterpret_cast<float *>(request_tensor->mutable_data()) + data_index; |
|
|
|
for (size_t k = 0; k < array_size; k++) { |
|
|
|
auto &json_data = json_data_array[k]; |
|
|
|
if (!json_data.is_number_float()) { |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) << "get data failed, expected float, given " << type_name(json_data); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
data[k] = json_data.get<float>(); |
|
|
|
} |
|
|
|
auto s_data = json_data.get<float>(); |
|
|
|
data->append(reinterpret_cast<char *>(&s_data), sizeof(float)); |
|
|
|
} else { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input data type should be int or float"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
return SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
Status RecusiveGetTensor(const json &json_data, size_t depth, std::vector<int> *shape, std::string *data, |
|
|
|
HTTP_DATA_TYPE *type) { |
|
|
|
Status RecusiveGetTensor(const json &json_data, size_t depth, ServingTensor *request_tensor, size_t data_index, |
|
|
|
HTTP_DATA_TYPE type) { |
|
|
|
Status status(SUCCESS); |
|
|
|
if (depth >= 10) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the tensor shape dims is larger than 10"); |
|
|
|
std::vector<int64_t> required_shape = request_tensor->shape(); |
|
|
|
if (depth >= required_shape.size()) { |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) |
|
|
|
<< "input tensor shape dims is more than required dims " << required_shape.size(); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (!json_data.is_array()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the tensor is constructed illegally"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
int cur_dim = json_data.size(); |
|
|
|
if (shape->size() <= depth) { |
|
|
|
shape->push_back(cur_dim); |
|
|
|
} else if ((*shape)[depth] != cur_dim) { |
|
|
|
return INFER_STATUS(INVALID_INPUTS) << "the tensor shape is constructed illegally"; |
|
|
|
if (json_data.size() != static_cast<size_t>(required_shape[depth])) { |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) |
|
|
|
<< "tensor format request is constructed illegally, input tensor shape dim " << depth |
|
|
|
<< " not match, required " << required_shape[depth] << ", given " << json_data.size(); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (json_data.at(0).is_array()) { |
|
|
|
for (const auto &item : json_data) { |
|
|
|
status = RecusiveGetTensor(item, depth + 1, shape, data, type); |
|
|
|
if (depth + 1 < required_shape.size()) { |
|
|
|
size_t sub_element_cnt = |
|
|
|
std::accumulate(required_shape.begin() + depth + 1, required_shape.end(), 1LL, std::multiplies<size_t>()); |
|
|
|
for (size_t k = 0; k < json_data.size(); k++) { |
|
|
|
status = RecusiveGetTensor(json_data[k], depth + 1, request_tensor, data_index + sub_element_cnt * k, type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
// last dim, read the data |
|
|
|
for (auto item : json_data) { |
|
|
|
status = GetDataFromJson(item, data, type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
status = GetDataFromJson(json_data, request_tensor, data_index, type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
} |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
std::vector<int64_t> GetJsonArrayShape(const json &json_array) { |
|
|
|
std::vector<int64_t> json_shape; |
|
|
|
const json *tmp_json = &json_array; |
|
|
|
while (tmp_json->is_array()) { |
|
|
|
if (tmp_json->empty()) { |
|
|
|
break; |
|
|
|
} |
|
|
|
json_shape.push_back(tmp_json->size()); |
|
|
|
tmp_json = &tmp_json->at(0); |
|
|
|
} |
|
|
|
return json_shape; |
|
|
|
} |
|
|
|
|
|
|
|
Status TransDataToPredictRequest(const json &message_info, PredictRequest *request) { |
|
|
|
Status status = SUCCESS; |
|
|
|
auto tensors = message_info.find(HTTP_DATA); |
|
|
|
@@ -163,52 +190,50 @@ Status TransDataToPredictRequest(const json &message_info, PredictRequest *reque |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "http message do not have data type"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
if (tensors->size() == 0) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input tensor list is null"); |
|
|
|
if (!tensors->is_array()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input tensor list is not array"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
for (const auto &tensor : *tensors) { |
|
|
|
std::string msg_data; |
|
|
|
HTTP_DATA_TYPE type{HTTP_DATA_NONE}; |
|
|
|
auto const &json_shape = GetJsonArrayShape(*tensors); |
|
|
|
if (json_shape.size() != 2) { // 2 is data format list deep |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) |
|
|
|
<< "the data format request is constructed illegally, expected list nesting depth 2, given " |
|
|
|
<< json_shape.size(); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (tensors->size() != static_cast<size_t>(request->data_size())) { |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) |
|
|
|
<< "model input count not match, model required " << request->data_size() << ", given " << tensors->size(); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < tensors->size(); i++) { |
|
|
|
const auto &tensor = tensors->at(i); |
|
|
|
ServingTensor request_tensor(*(request->mutable_data(i))); |
|
|
|
auto iter = infer_type2_http_type.find(request_tensor.data_type()); |
|
|
|
if (iter == infer_type2_http_type.end()) { |
|
|
|
ERROR_INFER_STATUS(status, FAILED, "the model input type is not supported right now"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
HTTP_DATA_TYPE type = iter->second; |
|
|
|
if (!tensor.is_array()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the tensor is constructed illegally"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (tensor.size() == 0) { |
|
|
|
if (tensor.empty()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input tensor is null"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
for (const auto &tensor_data : tensor) { |
|
|
|
status = GetDataFromJson(tensor_data, &msg_data, &type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
} |
|
|
|
auto iter = http_to_infer_map.find(type); |
|
|
|
if (iter == http_to_infer_map.end()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input type is not supported right now"); |
|
|
|
if (tensor.size() != static_cast<size_t>(request_tensor.ElementNum())) { |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) << "input " << i << " element count not match, model required " |
|
|
|
<< request_tensor.ElementNum() << ", given " << tensor.size(); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
auto infer_tensor = request->add_data(); |
|
|
|
infer_tensor->set_tensor_type(iter->second); |
|
|
|
infer_tensor->set_data(msg_data.data(), msg_data.size()); |
|
|
|
} |
|
|
|
// get model required shape |
|
|
|
std::vector<inference::InferTensor> tensor_list; |
|
|
|
status = Session::Instance().GetModelInputsInfo(tensor_list); |
|
|
|
if (status != SUCCESS) { |
|
|
|
ERROR_INFER_STATUS(status, FAILED, "get model inputs info failed"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (request->data_size() != static_cast<int64_t>(tensor_list.size())) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the inputs number is not equal to model required"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
for (int i = 0; i < request->data_size(); i++) { |
|
|
|
for (size_t j = 0; j < tensor_list[i].shape().size(); ++j) { |
|
|
|
request->mutable_data(i)->mutable_tensor_shape()->add_dims(tensor_list[i].shape()[j]); |
|
|
|
status = GetDataFromJson(tensor, &request_tensor, 0, type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
} |
|
|
|
return SUCCESS; |
|
|
|
@@ -221,22 +246,44 @@ Status TransTensorToPredictRequest(const json &message_info, PredictRequest *req |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "http message do not have tensor type"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (!tensors->is_array()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input tensor list is not array"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
if (tensors->size() != static_cast<size_t>(request->data_size())) { |
|
|
|
status = |
|
|
|
INFER_STATUS(INVALID_INPUTS) |
|
|
|
<< "model input count not match or json tensor request is constructed illegally, model input count required " |
|
|
|
<< request->data_size() << ", given " << tensors->size(); |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
for (size_t i = 0; i < tensors->size(); i++) { |
|
|
|
const auto &tensor = tensors->at(i); |
|
|
|
ServingTensor request_tensor(*(request->mutable_data(i))); |
|
|
|
|
|
|
|
for (const auto &tensor : *tensors) { |
|
|
|
std::vector<int> shape; |
|
|
|
std::string msg_data; |
|
|
|
HTTP_DATA_TYPE type{HTTP_DATA_NONE}; |
|
|
|
RecusiveGetTensor(tensor, 0, &shape, &msg_data, &type); |
|
|
|
auto iter = http_to_infer_map.find(type); |
|
|
|
if (iter == http_to_infer_map.end()) { |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, "the input type is not supported right now"); |
|
|
|
// check data shape |
|
|
|
auto const &json_shape = GetJsonArrayShape(tensor); |
|
|
|
if (json_shape != request_tensor.shape()) { // data shape not match |
|
|
|
status = INFER_STATUS(INVALID_INPUTS) |
|
|
|
<< "input " << i << " shape is invalid, expected " << request_tensor.shape() << ", given " << json_shape; |
|
|
|
MSI_LOG_ERROR << status.StatusMessage(); |
|
|
|
return status; |
|
|
|
} |
|
|
|
auto infer_tensor = request->add_data(); |
|
|
|
infer_tensor->set_tensor_type(iter->second); |
|
|
|
infer_tensor->set_data(msg_data.data(), msg_data.size()); |
|
|
|
for (const auto dim : shape) { |
|
|
|
infer_tensor->mutable_tensor_shape()->add_dims(dim); |
|
|
|
|
|
|
|
auto iter = infer_type2_http_type.find(request_tensor.data_type()); |
|
|
|
if (iter == infer_type2_http_type.end()) { |
|
|
|
ERROR_INFER_STATUS(status, FAILED, "the model input type is not supported right now"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
HTTP_DATA_TYPE type = iter->second; |
|
|
|
size_t depth = 0; |
|
|
|
size_t data_index = 0; |
|
|
|
status = RecusiveGetTensor(tensor, depth, &request_tensor, data_index, type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
MSI_LOG_ERROR << "Transfer tensor to predict request failed"; |
|
|
|
return status; |
|
|
|
} |
|
|
|
} |
|
|
|
return status; |
|
|
|
@@ -253,6 +300,27 @@ Status TransHTTPMsgToPredictRequest(struct evhttp_request *http_request, Predict |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
// get model required shape |
|
|
|
std::vector<inference::InferTensor> tensor_list; |
|
|
|
status = Session::Instance().GetModelInputsInfo(tensor_list); |
|
|
|
if (status != SUCCESS) { |
|
|
|
ERROR_INFER_STATUS(status, FAILED, "get model inputs info failed"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
for (auto &item : tensor_list) { |
|
|
|
auto input = request->add_data(); |
|
|
|
ServingTensor tensor(*input); |
|
|
|
tensor.set_shape(item.shape()); |
|
|
|
tensor.set_data_type(item.data_type()); |
|
|
|
int64_t element_num = tensor.ElementNum(); |
|
|
|
int64_t data_type_size = tensor.GetTypeSize(tensor.data_type()); |
|
|
|
if (element_num <= 0 || INT64_MAX / element_num < data_type_size) { |
|
|
|
ERROR_INFER_STATUS(status, FAILED, "model shape invalid"); |
|
|
|
return status; |
|
|
|
} |
|
|
|
tensor.resize_data(element_num * data_type_size); |
|
|
|
} |
|
|
|
MSI_TIME_STAMP_START(ParseJson) |
|
|
|
json message_info; |
|
|
|
try { |
|
|
|
message_info = nlohmann::json::parse(post_message); |
|
|
|
@@ -262,6 +330,7 @@ Status TransHTTPMsgToPredictRequest(struct evhttp_request *http_request, Predict |
|
|
|
ERROR_INFER_STATUS(status, INVALID_INPUTS, error_message); |
|
|
|
return status; |
|
|
|
} |
|
|
|
MSI_TIME_STAMP_END(ParseJson) |
|
|
|
|
|
|
|
status = CheckMessageValid(message_info, type); |
|
|
|
if (status != SUCCESS) { |
|
|
|
@@ -285,24 +354,18 @@ Status GetJsonFromTensor(const ms_serving::Tensor &tensor, int len, int *pos, js |
|
|
|
Status status(SUCCESS); |
|
|
|
switch (tensor.tensor_type()) { |
|
|
|
case ms_serving::MS_INT32: { |
|
|
|
std::vector<int> result_tensor; |
|
|
|
for (int j = 0; j < len; j++) { |
|
|
|
int val; |
|
|
|
memcpy(&val, reinterpret_cast<const int *>(tensor.data().data()) + *pos + j, sizeof(int)); |
|
|
|
result_tensor.push_back(val); |
|
|
|
} |
|
|
|
*out_json = result_tensor; |
|
|
|
auto data = reinterpret_cast<const int *>(tensor.data().data()) + *pos; |
|
|
|
std::vector<int32_t> result_tensor(len); |
|
|
|
memcpy_s(result_tensor.data(), result_tensor.size() * sizeof(int32_t), data, len * sizeof(int32_t)); |
|
|
|
*out_json = std::move(result_tensor); |
|
|
|
*pos += len; |
|
|
|
break; |
|
|
|
} |
|
|
|
case ms_serving::MS_FLOAT32: { |
|
|
|
std::vector<float> result_tensor; |
|
|
|
for (int j = 0; j < len; j++) { |
|
|
|
float val; |
|
|
|
memcpy(&val, reinterpret_cast<const float *>(tensor.data().data()) + *pos + j, sizeof(float)); |
|
|
|
result_tensor.push_back(val); |
|
|
|
} |
|
|
|
*out_json = result_tensor; |
|
|
|
auto data = reinterpret_cast<const float *>(tensor.data().data()) + *pos; |
|
|
|
std::vector<float> result_tensor(len); |
|
|
|
memcpy_s(result_tensor.data(), result_tensor.size() * sizeof(float), data, len * sizeof(float)); |
|
|
|
*out_json = std::move(result_tensor); |
|
|
|
*pos += len; |
|
|
|
break; |
|
|
|
} |
|
|
|
@@ -316,7 +379,8 @@ Status GetJsonFromTensor(const ms_serving::Tensor &tensor, int len, int *pos, js |
|
|
|
Status TransPredictReplyToData(const PredictReply &reply, json *out_json) { |
|
|
|
Status status(SUCCESS); |
|
|
|
for (int i = 0; i < reply.result_size(); i++) { |
|
|
|
json tensor_json; |
|
|
|
(*out_json)["data"].push_back(json()); |
|
|
|
json &tensor_json = (*out_json)["data"].back(); |
|
|
|
int num = 1; |
|
|
|
for (auto j = 0; j < reply.result(i).tensor_shape().dims_size(); j++) { |
|
|
|
num *= reply.result(i).tensor_shape().dims(j); |
|
|
|
@@ -326,7 +390,6 @@ Status TransPredictReplyToData(const PredictReply &reply, json *out_json) { |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
(*out_json)["data"].push_back(tensor_json); |
|
|
|
} |
|
|
|
return status; |
|
|
|
} |
|
|
|
@@ -344,12 +407,12 @@ Status RecusiveGetJson(const ms_serving::Tensor &tensor, int depth, int *pos, js |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (int i = 0; i < tensor.tensor_shape().dims(depth); i++) { |
|
|
|
json tensor_json; |
|
|
|
out_json->push_back(json()); |
|
|
|
json &tensor_json = out_json->back(); |
|
|
|
status = RecusiveGetJson(tensor, depth + 1, pos, &tensor_json); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
out_json->push_back(tensor_json); |
|
|
|
} |
|
|
|
} |
|
|
|
return status; |
|
|
|
@@ -358,13 +421,13 @@ Status RecusiveGetJson(const ms_serving::Tensor &tensor, int depth, int *pos, js |
|
|
|
Status TransPredictReplyToTensor(const PredictReply &reply, json *out_json) { |
|
|
|
Status status(SUCCESS); |
|
|
|
for (int i = 0; i < reply.result_size(); i++) { |
|
|
|
json tensor_json; |
|
|
|
(*out_json)["tensor"].push_back(json()); |
|
|
|
json &tensor_json = (*out_json)["tensor"].back(); |
|
|
|
int pos = 0; |
|
|
|
status = RecusiveGetJson(reply.result(i), 0, &pos, &tensor_json); |
|
|
|
if (status != SUCCESS) { |
|
|
|
return status; |
|
|
|
} |
|
|
|
(*out_json)["tensor"].push_back(tensor_json); |
|
|
|
} |
|
|
|
return status; |
|
|
|
} |
|
|
|
@@ -384,38 +447,57 @@ Status TransPredictReplyToHTTPMsg(const PredictReply &reply, const HTTP_TYPE &ty |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
std::string out_str = out_json.dump(); |
|
|
|
const std::string &out_str = out_json.dump(); |
|
|
|
evbuffer_add(buf, out_str.data(), out_str.size()); |
|
|
|
return status; |
|
|
|
} |
|
|
|
|
|
|
|
void http_handler_msg(struct evhttp_request *req, void *arg) { |
|
|
|
std::cout << "in handle" << std::endl; |
|
|
|
Status HttpHandleMsgDetail(struct evhttp_request *req, void *arg, struct evbuffer *retbuff) { |
|
|
|
PredictRequest request; |
|
|
|
PredictReply reply; |
|
|
|
HTTP_TYPE type; |
|
|
|
MSI_TIME_STAMP_START(ParseRequest) |
|
|
|
auto status = TransHTTPMsgToPredictRequest(req, &request, &type); |
|
|
|
MSI_TIME_STAMP_END(ParseRequest) |
|
|
|
if (status != SUCCESS) { |
|
|
|
ErrorMessage(req, status); |
|
|
|
MSI_LOG(ERROR) << "restful trans to request failed"; |
|
|
|
return; |
|
|
|
return status; |
|
|
|
} |
|
|
|
MSI_TIME_STAMP_START(Predict) |
|
|
|
status = Session::Instance().Predict(request, reply); |
|
|
|
MSI_TIME_STAMP_END(Predict) |
|
|
|
if (status != SUCCESS) { |
|
|
|
ErrorMessage(req, status); |
|
|
|
MSI_LOG(ERROR) << "restful predict failed"; |
|
|
|
return status; |
|
|
|
} |
|
|
|
MSI_TIME_STAMP_END(Predict) |
|
|
|
struct evbuffer *retbuff = evbuffer_new(); |
|
|
|
MSI_TIME_STAMP_START(CreateReplyJson) |
|
|
|
status = TransPredictReplyToHTTPMsg(reply, type, retbuff); |
|
|
|
MSI_TIME_STAMP_END(CreateReplyJson) |
|
|
|
if (status != SUCCESS) { |
|
|
|
ErrorMessage(req, status); |
|
|
|
MSI_LOG(ERROR) << "restful trans to reply failed"; |
|
|
|
return status; |
|
|
|
} |
|
|
|
return SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
void http_handler_msg(struct evhttp_request *req, void *arg) { |
|
|
|
MSI_TIME_STAMP_START(TotalRestfulPredict) |
|
|
|
struct evbuffer *retbuff = evbuffer_new(); |
|
|
|
if (retbuff == nullptr) { |
|
|
|
MSI_LOG_ERROR << "Create event buffer failed"; |
|
|
|
return; |
|
|
|
} |
|
|
|
auto status = HttpHandleMsgDetail(req, arg, retbuff); |
|
|
|
if (status != SUCCESS) { |
|
|
|
ErrorMessage(req, status); |
|
|
|
evbuffer_free(retbuff); |
|
|
|
return; |
|
|
|
} |
|
|
|
MSI_TIME_STAMP_START(ReplyJson) |
|
|
|
evhttp_send_reply(req, HTTP_OK, "Client", retbuff); |
|
|
|
MSI_TIME_STAMP_END(ReplyJson) |
|
|
|
evbuffer_free(retbuff); |
|
|
|
MSI_TIME_STAMP_END(TotalRestfulPredict) |
|
|
|
} |
|
|
|
|
|
|
|
} // namespace serving |
|
|
|
|