|
|
|
@@ -0,0 +1,78 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""LeNet.""" |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore.common.initializer import TruncatedNormal |
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): |
|
|
|
"""weight initial for conv layer""" |
|
|
|
weight = weight_variable() |
|
|
|
return nn.Conv2d(in_channels, out_channels, |
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding, |
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid") |
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels): |
|
|
|
"""weight initial for fc layer""" |
|
|
|
weight = weight_variable() |
|
|
|
bias = weight_variable() |
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias) |
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(): |
|
|
|
"""weight initial""" |
|
|
|
return TruncatedNormal(0.02) |
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell): |
|
|
|
""" |
|
|
|
Lenet network |
|
|
|
|
|
|
|
Args: |
|
|
|
num_class (int): Num classes. Default: 10. |
|
|
|
|
|
|
|
Returns: |
|
|
|
Tensor, output tensor |
|
|
|
Examples: |
|
|
|
>>> LeNet(num_class=10) |
|
|
|
|
|
|
|
""" |
|
|
|
def __init__(self, num_class=10, channel=1): |
|
|
|
super(LeNet5, self).__init__() |
|
|
|
self.num_class = num_class |
|
|
|
self.conv1 = conv(channel, 6, 5) |
|
|
|
self.conv2 = conv(6, 16, 5) |
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120) |
|
|
|
self.fc2 = fc_with_initialize(120, 84) |
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class) |
|
|
|
self.relu = nn.ReLU() |
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.flatten = nn.Flatten() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.max_pool2d(x) |
|
|
|
x = self.conv2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.max_pool2d(x) |
|
|
|
x = self.flatten(x) |
|
|
|
x = self.fc1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.fc2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.fc3(x) |
|
|
|
return x |