Browse Source

!11615 Add EluGrad for CPU

From: @he-botao
Reviewed-by: 
Signed-off-by:
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
7af2d44cd2
4 changed files with 217 additions and 1 deletions
  1. +85
    -0
      mindspore/ccsrc/backend/kernel_compiler/cpu/elu_grad_cpu_kernel.cc
  2. +56
    -0
      mindspore/ccsrc/backend/kernel_compiler/cpu/elu_grad_cpu_kernel.h
  3. +1
    -1
      mindspore/ops/operations/nn_ops.py
  4. +75
    -0
      tests/st/ops/cpu/test_elu_grad_op.py

+ 85
- 0
mindspore/ccsrc/backend/kernel_compiler/cpu/elu_grad_cpu_kernel.cc View File

@@ -0,0 +1,85 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <string>
#include <thread>
#include "backend/kernel_compiler/cpu/elu_grad_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"

namespace mindspore {
namespace kernel {
template <typename T>
void EluGradCPUKernel::EluGrad(const T *input0, const T *input1, T *out, size_t start, size_t end) {
const T alpha = static_cast<T>(1);
for (size_t i = start; i < end; i++) {
out[i] = (input1[i] < static_cast<T>(0)) ? input0[i] * (input1[i] + alpha) : input0[i];
}
}

void EluGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
if (dtype_ != AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1)) {
MS_LOG(EXCEPTION) << "Input0 and input1 must has the same data type";
}
}

bool EluGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat) {
LaunchKernel<float>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support.";
}
return true;
}

template <typename T>
void EluGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
T *input0 = reinterpret_cast<T *>(inputs[0]->addr);
T *input1 = reinterpret_cast<T *>(inputs[1]->addr);
T *output = reinterpret_cast<T *>(outputs[0]->addr);

size_t lens = outputs[0]->size > 0 ? static_cast<size_t>(outputs[0]->size / sizeof(T)) : 1;
auto max_thread_num = std::thread::hardware_concurrency();
size_t thread_num = lens < 128 * max_thread_num ? std::ceil(lens / 128.0) : max_thread_num;
MS_LOG(INFO) << "Lens=" << lens << "; use thread_num=" << thread_num << "; max_thread_num: " << max_thread_num;
std::vector<std::thread> threads;
if (thread_num < 1) {
MS_LOG(ERROR) << "Invalid value: thread_num " << thread_num;
return;
}
threads.reserve(thread_num);
size_t start = 0;
size_t once_compute_size = (lens + thread_num - 1) / thread_num;
if (once_compute_size < 1) {
MS_LOG(ERROR) << "Invalid value: once_compute_size " << once_compute_size;
return;
}
while (start < lens) {
size_t end = (start + once_compute_size) > lens ? lens : (start + once_compute_size);
threads.emplace_back(std::thread(&EluGradCPUKernel::EluGrad<T>, this, input0, input1, output, start, end));
start += once_compute_size;
}
for (size_t i = 0; i < threads.size(); ++i) {
threads[i].join();
}
}
} // namespace kernel
} // namespace mindspore

+ 56
- 0
mindspore/ccsrc/backend/kernel_compiler/cpu/elu_grad_cpu_kernel.h View File

@@ -0,0 +1,56 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ELU_GRAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ELU_GRAD_CPU_KERNEL_H_
#include <memory>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"

namespace mindspore {
namespace kernel {
class EluGradCPUKernel : public CPUKernel {
public:
EluGradCPUKernel() = default;
~EluGradCPUKernel() override = default;

void InitKernel(const CNodePtr &kernel_node) override;

bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);

private:
template <typename T>
void EluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
TypeId dtype_{kTypeUnknown};
};

MS_REG_CPU_KERNEL(
EluGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
EluGradCPUKernel);
MS_REG_CPU_KERNEL(
EluGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
EluGradCPUKernel);
MS_REG_CPU_KERNEL(
EluGrad, KernelAttr().AddInputAttr(kNumberTypeFloat).AddInputAttr(kNumberTypeFloat).AddOutputAttr(kNumberTypeFloat),
EluGradCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ELU_GRAD_CPU_KERNEL_H_

+ 1
- 1
mindspore/ops/operations/nn_ops.py View File

@@ -555,7 +555,7 @@ class Elu(PrimitiveWithInfer):
Tensor, has the same shape and data type as `input_x`. Tensor, has the same shape and data type as `input_x`.


Supported Platforms: Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``


Examples: Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)


+ 75
- 0
tests/st/ops/cpu/test_elu_grad_op.py View File

@@ -0,0 +1,75 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import numpy as np
import pytest

import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G

context.set_context(mode=context.GRAPH_MODE, device_target='CPU')


class NetEluGrad(nn.Cell):
def __init__(self):
super(NetEluGrad, self).__init__()
self.elu_grad = G.EluGrad()

def construct(self, dy, y):
return self.elu_grad(dy, y)


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_elu_grad_fp32():
y = Tensor(np.array([[[[-0.3, 1, 2],
[1, -0.6, 1],
[2, 1, -2]]]]).astype(np.float32))
dy = Tensor(np.array([[[[-11, 2, 4],
[-1, 1, -1],
[-4, 4, -4]]]]).astype(np.float32))

expect = np.array([[[[-7.7, 2, 4],
[-1, 0.4, -1],
[-4, 4, 4]]]]).astype(np.float32)

error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6

elu_grad = NetEluGrad()
output = elu_grad(dy, y)
print(output)
diff = np.abs(output.asnumpy() - expect)
double_check = diff / expect
assert np.all(double_check < error)


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_elu_grad_fp16():
y = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float16))
dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float16))
expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float16)
error = np.ones(shape=[2, 3]) * 1.0e-3

elu_grad = NetEluGrad()
output = elu_grad(dy, y)
print(output)
diff = np.abs(output.asnumpy() - expect)
double_check = diff / expect
assert np.all(double_check < error)

Loading…
Cancel
Save