|
|
|
@@ -0,0 +1,179 @@ |
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================== |
|
|
|
|
|
|
|
import math |
|
|
|
import pytest |
|
|
|
import numpy as np |
|
|
|
from mindspore import context |
|
|
|
from mindspore import nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.common.initializer import initializer |
|
|
|
from mindspore.common.parameter import ParameterTuple |
|
|
|
from mindspore.common.parameter import Parameter |
|
|
|
from mindspore.ops import composite as c |
|
|
|
|
|
|
|
|
|
|
|
class GradOfAllInputsAndParams(nn.Cell): |
|
|
|
def __init__(self, network, sens_param): |
|
|
|
super().__init__() |
|
|
|
self.grad = c.GradOperation(get_all=True, get_by_list=True, sens_param=sens_param) |
|
|
|
self.network = network |
|
|
|
self.params = ParameterTuple(self.network.trainable_params()) |
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
|
gout = self.grad(self.network, self.params)(*inputs) |
|
|
|
return gout |
|
|
|
|
|
|
|
|
|
|
|
class LSTM(nn.Cell): |
|
|
|
def __init__(self, input_s, hidden_s, num_layers, has_bias, batch_first, bidirectional, dropout): |
|
|
|
super().__init__() |
|
|
|
self.lstm = nn.LSTM(input_size=input_s, hidden_size=hidden_s, num_layers=num_layers, has_bias=has_bias, |
|
|
|
batch_first=batch_first, bidirectional=bidirectional, dropout=dropout) |
|
|
|
|
|
|
|
def construct(self, inp, h0, c0): |
|
|
|
return self.lstm(inp, (h0, c0)) |
|
|
|
|
|
|
|
|
|
|
|
class LSTMWeightBias(): |
|
|
|
def __init__(self, num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional): |
|
|
|
self.num_layers = num_layers |
|
|
|
self.has_bias = has_bias |
|
|
|
self.input_s = input_s |
|
|
|
self.num_directions = num_directions |
|
|
|
self.hidden_s = hidden_s |
|
|
|
self.bidirectional = bidirectional |
|
|
|
|
|
|
|
def get_weight_bias(self): |
|
|
|
stdv = 1 / math.sqrt(self.hidden_s) |
|
|
|
gate_size = 4 * self.hidden_s |
|
|
|
w_list_value = [] |
|
|
|
b_list_value = [] |
|
|
|
|
|
|
|
for i in range(self.num_layers): |
|
|
|
b0 = np.zeros(gate_size, dtype=np.float16) |
|
|
|
w_shape = self.input_s if i == 0 else (self.num_directions * self.hidden_s) |
|
|
|
w_np = np.random.uniform(-stdv, stdv, (w_shape + self.hidden_s, gate_size)).astype(np.float16) |
|
|
|
w_list_value.append(Parameter(initializer(Tensor(w_np), [w_shape + self.hidden_s, gate_size]), |
|
|
|
name="weight_fw" + str(i))) |
|
|
|
|
|
|
|
if self.has_bias: |
|
|
|
b_np = np.random.uniform(-stdv, stdv, gate_size).astype(np.float16) |
|
|
|
b_list_value.append(Parameter(initializer(Tensor(b_np), [gate_size]), name="bias_fw" + str(i))) |
|
|
|
else: |
|
|
|
b_list_value.append(Parameter(initializer(Tensor(b0), [gate_size]), name="bias_fw" + str(i))) |
|
|
|
|
|
|
|
if self.bidirectional: |
|
|
|
w_bw_np = np.random.uniform(-stdv, stdv, (w_shape + self.hidden_s, gate_size)).astype(np.float16) |
|
|
|
b_list_value.append(Parameter(initializer(Tensor(w_bw_np), [w_shape + self.hidden_s, gate_size]), |
|
|
|
name="weight_bw" + str(i))) |
|
|
|
b_bw_np = np.random.uniform(-stdv, stdv, (4 * self.hidden_s)).astype( |
|
|
|
np.float16) if self.has_bias else b0 |
|
|
|
b_list_value.append(Parameter(initializer(Tensor(b_bw_np), [gate_size]), name="bias_bw" + str(i))) |
|
|
|
w_list_value = ParameterTuple(w_list_value) |
|
|
|
b_list_value = ParameterTuple(b_list_value) |
|
|
|
return w_list_value, b_list_value |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_sit_lstm_forward_input_3_32_32_is_32_hs_16(): |
|
|
|
input_s = 32 |
|
|
|
hidden_s = 16 |
|
|
|
has_bias = True |
|
|
|
bidirectional = False |
|
|
|
num_layers = 1 |
|
|
|
num_directions = 1 |
|
|
|
|
|
|
|
fact = LSTMWeightBias(num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional) |
|
|
|
w_list_value, b_list_value = fact.get_weight_bias() |
|
|
|
|
|
|
|
h0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32)) |
|
|
|
c0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32)) |
|
|
|
input_ms = Tensor(np.random.randn(3, 32, 32).astype(np.float32)) |
|
|
|
|
|
|
|
# graph mode |
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
net = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False, |
|
|
|
bidirectional=bidirectional, dropout=0.0) |
|
|
|
net.lstm.w_list = w_list_value |
|
|
|
net.lstm.b_list = b_list_value |
|
|
|
out, (hy, cy) = net(input_ms, h0, c0) |
|
|
|
|
|
|
|
# pynative mode |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE) |
|
|
|
net_pynative = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False, |
|
|
|
bidirectional=bidirectional, dropout=0.0) |
|
|
|
net_pynative.lstm.w_list = w_list_value |
|
|
|
net_pynative.lstm.b_list = b_list_value |
|
|
|
out_pynative, (hy_pynative, cy_pynative) = net_pynative(input_ms, h0, c0) |
|
|
|
|
|
|
|
assert np.allclose(out.asnumpy(), out_pynative.asnumpy(), 0.0001, 0.0001) |
|
|
|
assert np.allclose(hy.asnumpy(), hy_pynative.asnumpy(), 0.0001, 0.0001) |
|
|
|
assert np.allclose(cy.asnumpy(), cy_pynative.asnumpy(), 0.0001, 0.0001) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_sit_lstm_grad_input_3_32_32_is_32_hs_16(): |
|
|
|
input_s = 32 |
|
|
|
hidden_s = 16 |
|
|
|
has_bias = True |
|
|
|
bidirectional = False |
|
|
|
num_layers = 1 |
|
|
|
num_directions = 1 |
|
|
|
|
|
|
|
fact = LSTMWeightBias(num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional) |
|
|
|
w_list_value, b_list_value = fact.get_weight_bias() |
|
|
|
|
|
|
|
h0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32)) |
|
|
|
c0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32)) |
|
|
|
input_ms = Tensor(np.random.randn(3, 32, 32).astype(np.float32)) |
|
|
|
|
|
|
|
# graph mode |
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
net = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False, |
|
|
|
bidirectional=bidirectional, dropout=0.0) |
|
|
|
net.lstm.w_list = w_list_value |
|
|
|
net.lstm.b_list = b_list_value |
|
|
|
|
|
|
|
grad_net_inp = GradOfAllInputsAndParams(net, sens_param=False) |
|
|
|
grad_net_inp.set_train() |
|
|
|
out_grad, _ = grad_net_inp(input_ms, h0, c0) |
|
|
|
x_grad = out_grad[0].asnumpy() |
|
|
|
h_grad = out_grad[1].asnumpy() |
|
|
|
c_grad = out_grad[2].asnumpy() |
|
|
|
|
|
|
|
# pynative mode |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE) |
|
|
|
net_pynative = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False, |
|
|
|
bidirectional=bidirectional, dropout=0.0) |
|
|
|
net_pynative.lstm.w_list = w_list_value |
|
|
|
net_pynative.lstm.b_list = b_list_value |
|
|
|
|
|
|
|
grad_net_inp_pynative = GradOfAllInputsAndParams(net_pynative, sens_param=False) |
|
|
|
grad_net_inp_pynative.set_train() |
|
|
|
out_grad_pynative, _ = grad_net_inp_pynative(input_ms, h0, c0) |
|
|
|
x_grad_pynative = out_grad_pynative[0].asnumpy() |
|
|
|
h_grad_pynative = out_grad_pynative[1].asnumpy() |
|
|
|
c_grad_pynative = out_grad_pynative[2].asnumpy() |
|
|
|
|
|
|
|
assert np.allclose(x_grad, x_grad_pynative, 0.0001, 0.0001) |
|
|
|
assert np.allclose(h_grad, h_grad_pynative, 0.0001, 0.0001) |
|
|
|
assert np.allclose(c_grad, c_grad_pynative, 0.0001, 0.0001) |