Browse Source

!9627 [MSLITE][Develop] delete mean

From: @sunsuodong
Reviewed-by: @zhang_xue_tong,@zhanghaibo5
Signed-off-by: @zhang_xue_tong
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
786b06a30e
13 changed files with 2 additions and 275 deletions
  1. +1
    -1
      mindspore/lite/schema/model.fbs
  2. +1
    -1
      mindspore/lite/schema/ops.fbs
  3. +0
    -123
      mindspore/lite/src/ops/mean.cc
  4. +0
    -48
      mindspore/lite/src/ops/mean.h
  5. +0
    -52
      mindspore/lite/src/ops/populate/mean_populate.cc
  6. +0
    -3
      mindspore/lite/src/ops/primitive_c.cc
  7. +0
    -14
      mindspore/lite/src/runtime/kernel/arm/base/reduce_base.cc
  8. +0
    -13
      mindspore/lite/src/runtime/kernel/arm/fp16/reduce_fp16.cc
  9. +0
    -1
      mindspore/lite/src/runtime/kernel/arm/fp32/reduce_fp32.cc
  10. +0
    -14
      mindspore/lite/src/runtime/kernel/arm/int8/reduce_int8.cc
  11. +0
    -3
      mindspore/lite/src/runtime/kernel/opencl/kernel/reduce.cc
  12. +0
    -1
      mindspore/lite/tools/common/node_util.cc
  13. +0
    -1
      mindspore/lite/tools/converter/quantizer/calc_quant_param.cc

+ 1
- 1
mindspore/lite/schema/model.fbs View File

@@ -72,7 +72,7 @@ union PrimitiveType {
Resize,
DetectionPostProcess,
FullConnection,
Mean,
Mean, // DEPRECATED
DeConv2D,
Scale,
Reshape,


+ 1
- 1
mindspore/lite/schema/ops.fbs View File

@@ -457,7 +457,7 @@ table FullConnection {
}

// Mean(input_tensor, axis, keep_dims)
table Mean {
table Mean { // DEPRECATED
axis: [int];
keepDims: bool = false;
}


+ 0
- 123
mindspore/lite/src/ops/mean.cc View File

@@ -1,123 +0,0 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "src/ops/mean.h"

#ifndef PRIMITIVE_WRITEABLE
#include "src/ops/ops_register.h"
#endif

namespace mindspore {
namespace lite {
#ifdef PRIMITIVE_WRITEABLE
std::vector<int> Mean::GetAxis() const { return this->primitive_->value.AsMean()->axis; }
bool Mean::GetKeepDims() const { return this->primitive_->value.AsMean()->keepDims; }

void Mean::SetAxis(const std::vector<int> &axis) { this->primitive_->value.AsMean()->axis = axis; }
void Mean::SetKeepDims(bool keep_dims) { this->primitive_->value.AsMean()->keepDims = keep_dims; }

#else

std::vector<int> Mean::GetAxis() const {
auto fb_vector = this->primitive_->value_as_Mean()->axis();
return std::vector<int>(fb_vector->begin(), fb_vector->end());
}
bool Mean::GetKeepDims() const { return this->primitive_->value_as_Mean()->keepDims(); }

int Mean::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
MS_ASSERT(nullptr != primitive);
MS_ASSERT(nullptr != fbb);
auto attr = primitive->value_as_Mean();
if (attr == nullptr) {
MS_LOG(ERROR) << "value_as_Mean return nullptr";
return RET_ERROR;
}
std::vector<int32_t> axis;
if (attr->axis() != nullptr) {
for (int i = 0; i < static_cast<int>(attr->axis()->size()); i++) {
axis.push_back(attr->axis()->data()[i]);
}
}
auto val_offset = schema::CreateMeanDirect(*fbb, &axis, attr->keepDims());
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Mean, val_offset.o);
fbb->Finish(prim_offset);
return RET_OK;
}

PrimitiveC *MeanCreator(const schema::Primitive *primitive) { return PrimitiveC::NewPrimitiveC<Mean>(primitive); }
Registry MeanRegistry(schema::PrimitiveType_Mean, MeanCreator);
#endif

namespace {
constexpr size_t kInputSize = 1;
constexpr size_t kOutputSize = 1;
} // namespace
int Mean::InferShape(std::vector<Tensor *> inputs_, std::vector<Tensor *> outputs_) {
if (inputs_.size() != kInputSize || outputs_.size() != kOutputSize) {
return RET_ERROR;
}
auto input = inputs_.front();
auto output = outputs_.front();
if (input == nullptr || output == nullptr) {
return RET_NULL_PTR;
}
output->set_data_type(input->data_type());
output->set_format(input->format());
if (!infer_flag()) {
return RET_INFER_INVALID;
}
if (this->primitive_ == nullptr) {
return RET_NULL_PTR;
}

bool keep_dims = static_cast<bool>(GetKeepDims());
std::vector<int> in_shape = input->shape();
std::vector<int> out_shape;
const auto &axes = GetAxis();
auto num_axes = axes.size();
// reduce on all axes
if (num_axes == 0) {
if (keep_dims) {
for (size_t i = 0; i < in_shape.size(); i++) {
out_shape.push_back(1);
}
}
output->set_shape(out_shape);
output->set_data_type(input->data_type());
return RET_OK;
}
// reduce on selected axes
for (size_t i = 0; i < in_shape.size(); i++) {
bool reduce_axis = false;
for (size_t idx = 0; idx < num_axes; ++idx) {
if (static_cast<size_t>(axes.at(idx)) == i) {
reduce_axis = true;
break;
}
}
if (reduce_axis) {
if (keep_dims) {
out_shape.push_back(1);
}
} else {
out_shape.push_back(in_shape.at(i));
}
}
output->set_shape(out_shape);
return RET_OK;
}
} // namespace lite
} // namespace mindspore

+ 0
- 48
mindspore/lite/src/ops/mean.h View File

@@ -1,48 +0,0 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef LITE_MINDSPORE_LITE_C_OPS_MEAN_H_
#define LITE_MINDSPORE_LITE_C_OPS_MEAN_H_

#include <vector>
#include <set>
#include <cmath>
#include <memory>

#include "src/ops/primitive_c.h"

namespace mindspore {
namespace lite {
class Mean : public PrimitiveC {
public:
Mean() = default;
~Mean() = default;
#ifdef PRIMITIVE_WRITEABLE
MS_DECLARE_PARENT(Mean, PrimitiveC);
explicit Mean(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
void SetAxis(const std::vector<int> &axis);
void SetKeepDims(bool keep_dims);
#else
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
#endif
int InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) override;
std::vector<int> GetAxis() const;
bool GetKeepDims() const;
};
} // namespace lite
} // namespace mindspore

#endif // LITE_MINDSPORE_LITE_C_OPS_MEAN_H_

+ 0
- 52
mindspore/lite/src/ops/populate/mean_populate.cc View File

@@ -1,52 +0,0 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "src/ops/mean.h"
#include "src/ops/primitive_c.h"
#include "src/ops/populate/populate_register.h"
#include "nnacl/reduce_parameter.h"

namespace mindspore {
namespace lite {

OpParameter *PopulateMeanParameter(const mindspore::lite::PrimitiveC *primitive) {
ReduceParameter *mean_param = reinterpret_cast<ReduceParameter *>(malloc(sizeof(ReduceParameter)));
if (mean_param == nullptr) {
MS_LOG(ERROR) << "malloc ReduceParameter failed.";
return nullptr;
}
memset(mean_param, 0, sizeof(ReduceParameter));
mean_param->op_parameter_.type_ = primitive->Type();
auto mean = reinterpret_cast<mindspore::lite::Mean *>(const_cast<mindspore::lite::PrimitiveC *>(primitive));
mean_param->keep_dims_ = mean->GetKeepDims();
auto axisVector = mean->GetAxis();
if (axisVector.size() > REDUCE_MAX_AXES_NUM) {
MS_LOG(ERROR) << "Reduce axes size " << axisVector.size() << " exceed limit " << REDUCE_MAX_AXES_NUM;
free(mean_param);
return nullptr;
}
mean_param->num_axes_ = static_cast<int>(axisVector.size());
int i = 0;
for (auto iter = axisVector.begin(); iter != axisVector.end(); iter++) {
mean_param->axes_[i++] = *iter;
}
mean_param->mode_ = static_cast<int>(schema::ReduceMode_ReduceMean);
return reinterpret_cast<OpParameter *>(mean_param);
}
Registry MeanParameterRegistry(schema::PrimitiveType_Mean, PopulateMeanParameter);

} // namespace lite
} // namespace mindspore

+ 0
- 3
mindspore/lite/src/ops/primitive_c.cc View File

@@ -67,7 +67,6 @@
#include "src/ops/slice.h"
#include "src/ops/squeeze.h"
#include "src/ops/flatten.h"
#include "src/ops/mean.h"
#include "src/ops/nhwc2nchw.h"
#include "src/ops/stack.h"
#include "src/ops/crop.h"
@@ -710,8 +709,6 @@ PrimitiveC *PrimitiveC::Create(mindspore::schema::PrimitiveT *primitive) {
return new (std::nothrow) Squeeze(primitive);
case schema::PrimitiveType_Flatten:
return new (std::nothrow) Flatten(primitive);
case schema::PrimitiveType_Mean:
return new (std::nothrow) Mean(primitive);
case schema::PrimitiveType_Stack:
return new (std::nothrow) Stack(primitive);
case schema::PrimitiveType_Crop:


+ 0
- 14
mindspore/lite/src/runtime/kernel/arm/base/reduce_base.cc View File

@@ -26,7 +26,6 @@ using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_NULL_PTR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Mean;
using mindspore::schema::PrimitiveType_Reduce;

namespace mindspore::kernel {
@@ -206,17 +205,6 @@ kernel::LiteKernel *CpuMeanFp32KernelCreator(const std::vector<lite::Tensor *> &
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Mean);
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Reduce opParameter nullptr";
return nullptr;
}
if (desc.type != schema::PrimitiveType_Mean) {
MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Mean, got " << desc.type;
free(opParameter);
return nullptr;
}
auto *kernel = new (std::nothrow) ReduceCPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
@@ -236,6 +224,4 @@ kernel::LiteKernel *CpuMeanFp32KernelCreator(const std::vector<lite::Tensor *> &
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeInt, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Mean, CpuMeanFp32KernelCreator)

} // namespace mindspore::kernel

+ 0
- 13
mindspore/lite/src/runtime/kernel/arm/fp16/reduce_fp16.cc View File

@@ -28,7 +28,6 @@ using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_NULL_PTR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Mean;
using mindspore::schema::PrimitiveType_Reduce;
using mindspore::schema::ReduceMode;
using mindspore::schema::ReduceMode_ReduceMax;
@@ -191,17 +190,6 @@ kernel::LiteKernel *CpuMeanFp16KernelCreator(const std::vector<lite::Tensor *> &
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Mean);
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Reduce opParameter nullptr";
return nullptr;
}
if (desc.type != schema::PrimitiveType_Mean) {
MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Mean, got " << desc.type;
free(opParameter);
return nullptr;
}
auto *kernel = new (std::nothrow) ReduceFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
@@ -219,5 +207,4 @@ kernel::LiteKernel *CpuMeanFp16KernelCreator(const std::vector<lite::Tensor *> &
}

REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reduce, CpuReduceFp16KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Mean, CpuMeanFp16KernelCreator)
} // namespace mindspore::kernel

+ 0
- 1
mindspore/lite/src/runtime/kernel/arm/fp32/reduce_fp32.cc View File

@@ -28,7 +28,6 @@ using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_NULL_PTR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Mean;
using mindspore::schema::PrimitiveType_Reduce;
using mindspore::schema::ReduceMode;
using mindspore::schema::ReduceMode_ReduceAll;


+ 0
- 14
mindspore/lite/src/runtime/kernel/arm/int8/reduce_int8.cc View File

@@ -35,7 +35,6 @@ using mindspore::schema::ReduceMode_ReduceSum;
using mindspore::schema::ReduceMode_ReduceSumSquare;

using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::schema::PrimitiveType_Mean;
using mindspore::schema::PrimitiveType_Reduce;

namespace mindspore::kernel {
@@ -536,17 +535,6 @@ kernel::LiteKernel *CpuReduceInt8KernelCreator(const std::vector<lite::Tensor *>
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Reduce);
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Reduce opParameter nullptr";
return nullptr;
}
if (desc.type != schema::PrimitiveType_Reduce) {
MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Reduce, got " << desc.type;
free(opParameter);
return nullptr;
}
auto *kernel = new (std::nothrow) ReduceInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
@@ -563,6 +551,4 @@ kernel::LiteKernel *CpuReduceInt8KernelCreator(const std::vector<lite::Tensor *>
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Reduce, CpuReduceInt8KernelCreator)
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Mean, CpuReduceInt8KernelCreator)

} // namespace mindspore::kernel

+ 0
- 3
mindspore/lite/src/runtime/kernel/opencl/kernel/reduce.cc View File

@@ -28,7 +28,6 @@ using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_NULL_PTR;
using mindspore::lite::RET_OK;
using mindspore::lite::RET_PARAM_INVALID;
using mindspore::schema::PrimitiveType_Mean;
using mindspore::schema::PrimitiveType_Reduce;
using mindspore::schema::ReduceMode;
using mindspore::schema::ReduceMode_ReduceMax;
@@ -183,8 +182,6 @@ int ReduceOpenCLKernel::Run() {
return mindspore::lite::RET_OK;
}

REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Mean, OpenCLKernelCreator<ReduceOpenCLKernel>)
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Mean, OpenCLKernelCreator<ReduceOpenCLKernel>)
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Reduce, OpenCLKernelCreator<ReduceOpenCLKernel>)
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Reduce, OpenCLKernelCreator<ReduceOpenCLKernel>)
} // namespace mindspore::kernel

+ 0
- 1
mindspore/lite/tools/common/node_util.cc View File

@@ -103,7 +103,6 @@ static const std::vector<schema::PrimitiveType> int8OpList = {schema::PrimitiveT
schema::PrimitiveType_BatchToSpace,
schema::PrimitiveType_BatchToSpaceND,
schema::PrimitiveType_Reduce,
schema::PrimitiveType_Mean,
schema::PrimitiveType_Round,
schema::PrimitiveType_Floor,
schema::PrimitiveType_Ceil,


+ 0
- 1
mindspore/lite/tools/converter/quantizer/calc_quant_param.cc View File

@@ -520,7 +520,6 @@ QuantParamCalcRegister::QuantParamCalcRegister() {
_registerMap[schema::PrimitiveType_RealDiv] = std::make_shared<CalcRealDiv>();
_registerMap[schema::PrimitiveType_Reduce] = commonCalcer;
_registerMap[schema::PrimitiveType_BiasAdd] = std::make_shared<BiasAddCalcer>();
_registerMap[schema::PrimitiveType_Mean] = linearCalcer;
_registerMap[schema::PrimitiveType_Transpose] = linearCalcer;
_registerMap[schema::PrimitiveType_MatMul] = std::make_shared<ConvCalcer>();
_registerMap[schema::PrimitiveType_FullConnection] = std::make_shared<ConvCalcer>();


Loading…
Cancel
Save