From: @sunsuodong Reviewed-by: @zhang_xue_tong,@zhanghaibo5 Signed-off-by: @zhang_xue_tongtags/v1.1.0
| @@ -72,7 +72,7 @@ union PrimitiveType { | |||
| Resize, | |||
| DetectionPostProcess, | |||
| FullConnection, | |||
| Mean, | |||
| Mean, // DEPRECATED | |||
| DeConv2D, | |||
| Scale, | |||
| Reshape, | |||
| @@ -457,7 +457,7 @@ table FullConnection { | |||
| } | |||
| // Mean(input_tensor, axis, keep_dims) | |||
| table Mean { | |||
| table Mean { // DEPRECATED | |||
| axis: [int]; | |||
| keepDims: bool = false; | |||
| } | |||
| @@ -1,123 +0,0 @@ | |||
| /** | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/ops/mean.h" | |||
| #ifndef PRIMITIVE_WRITEABLE | |||
| #include "src/ops/ops_register.h" | |||
| #endif | |||
| namespace mindspore { | |||
| namespace lite { | |||
| #ifdef PRIMITIVE_WRITEABLE | |||
| std::vector<int> Mean::GetAxis() const { return this->primitive_->value.AsMean()->axis; } | |||
| bool Mean::GetKeepDims() const { return this->primitive_->value.AsMean()->keepDims; } | |||
| void Mean::SetAxis(const std::vector<int> &axis) { this->primitive_->value.AsMean()->axis = axis; } | |||
| void Mean::SetKeepDims(bool keep_dims) { this->primitive_->value.AsMean()->keepDims = keep_dims; } | |||
| #else | |||
| std::vector<int> Mean::GetAxis() const { | |||
| auto fb_vector = this->primitive_->value_as_Mean()->axis(); | |||
| return std::vector<int>(fb_vector->begin(), fb_vector->end()); | |||
| } | |||
| bool Mean::GetKeepDims() const { return this->primitive_->value_as_Mean()->keepDims(); } | |||
| int Mean::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) { | |||
| MS_ASSERT(nullptr != primitive); | |||
| MS_ASSERT(nullptr != fbb); | |||
| auto attr = primitive->value_as_Mean(); | |||
| if (attr == nullptr) { | |||
| MS_LOG(ERROR) << "value_as_Mean return nullptr"; | |||
| return RET_ERROR; | |||
| } | |||
| std::vector<int32_t> axis; | |||
| if (attr->axis() != nullptr) { | |||
| for (int i = 0; i < static_cast<int>(attr->axis()->size()); i++) { | |||
| axis.push_back(attr->axis()->data()[i]); | |||
| } | |||
| } | |||
| auto val_offset = schema::CreateMeanDirect(*fbb, &axis, attr->keepDims()); | |||
| auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Mean, val_offset.o); | |||
| fbb->Finish(prim_offset); | |||
| return RET_OK; | |||
| } | |||
| PrimitiveC *MeanCreator(const schema::Primitive *primitive) { return PrimitiveC::NewPrimitiveC<Mean>(primitive); } | |||
| Registry MeanRegistry(schema::PrimitiveType_Mean, MeanCreator); | |||
| #endif | |||
| namespace { | |||
| constexpr size_t kInputSize = 1; | |||
| constexpr size_t kOutputSize = 1; | |||
| } // namespace | |||
| int Mean::InferShape(std::vector<Tensor *> inputs_, std::vector<Tensor *> outputs_) { | |||
| if (inputs_.size() != kInputSize || outputs_.size() != kOutputSize) { | |||
| return RET_ERROR; | |||
| } | |||
| auto input = inputs_.front(); | |||
| auto output = outputs_.front(); | |||
| if (input == nullptr || output == nullptr) { | |||
| return RET_NULL_PTR; | |||
| } | |||
| output->set_data_type(input->data_type()); | |||
| output->set_format(input->format()); | |||
| if (!infer_flag()) { | |||
| return RET_INFER_INVALID; | |||
| } | |||
| if (this->primitive_ == nullptr) { | |||
| return RET_NULL_PTR; | |||
| } | |||
| bool keep_dims = static_cast<bool>(GetKeepDims()); | |||
| std::vector<int> in_shape = input->shape(); | |||
| std::vector<int> out_shape; | |||
| const auto &axes = GetAxis(); | |||
| auto num_axes = axes.size(); | |||
| // reduce on all axes | |||
| if (num_axes == 0) { | |||
| if (keep_dims) { | |||
| for (size_t i = 0; i < in_shape.size(); i++) { | |||
| out_shape.push_back(1); | |||
| } | |||
| } | |||
| output->set_shape(out_shape); | |||
| output->set_data_type(input->data_type()); | |||
| return RET_OK; | |||
| } | |||
| // reduce on selected axes | |||
| for (size_t i = 0; i < in_shape.size(); i++) { | |||
| bool reduce_axis = false; | |||
| for (size_t idx = 0; idx < num_axes; ++idx) { | |||
| if (static_cast<size_t>(axes.at(idx)) == i) { | |||
| reduce_axis = true; | |||
| break; | |||
| } | |||
| } | |||
| if (reduce_axis) { | |||
| if (keep_dims) { | |||
| out_shape.push_back(1); | |||
| } | |||
| } else { | |||
| out_shape.push_back(in_shape.at(i)); | |||
| } | |||
| } | |||
| output->set_shape(out_shape); | |||
| return RET_OK; | |||
| } | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -1,48 +0,0 @@ | |||
| /** | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef LITE_MINDSPORE_LITE_C_OPS_MEAN_H_ | |||
| #define LITE_MINDSPORE_LITE_C_OPS_MEAN_H_ | |||
| #include <vector> | |||
| #include <set> | |||
| #include <cmath> | |||
| #include <memory> | |||
| #include "src/ops/primitive_c.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| class Mean : public PrimitiveC { | |||
| public: | |||
| Mean() = default; | |||
| ~Mean() = default; | |||
| #ifdef PRIMITIVE_WRITEABLE | |||
| MS_DECLARE_PARENT(Mean, PrimitiveC); | |||
| explicit Mean(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {} | |||
| void SetAxis(const std::vector<int> &axis); | |||
| void SetKeepDims(bool keep_dims); | |||
| #else | |||
| int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override; | |||
| #endif | |||
| int InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) override; | |||
| std::vector<int> GetAxis() const; | |||
| bool GetKeepDims() const; | |||
| }; | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| #endif // LITE_MINDSPORE_LITE_C_OPS_MEAN_H_ | |||
| @@ -1,52 +0,0 @@ | |||
| /** | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/ops/mean.h" | |||
| #include "src/ops/primitive_c.h" | |||
| #include "src/ops/populate/populate_register.h" | |||
| #include "nnacl/reduce_parameter.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| OpParameter *PopulateMeanParameter(const mindspore::lite::PrimitiveC *primitive) { | |||
| ReduceParameter *mean_param = reinterpret_cast<ReduceParameter *>(malloc(sizeof(ReduceParameter))); | |||
| if (mean_param == nullptr) { | |||
| MS_LOG(ERROR) << "malloc ReduceParameter failed."; | |||
| return nullptr; | |||
| } | |||
| memset(mean_param, 0, sizeof(ReduceParameter)); | |||
| mean_param->op_parameter_.type_ = primitive->Type(); | |||
| auto mean = reinterpret_cast<mindspore::lite::Mean *>(const_cast<mindspore::lite::PrimitiveC *>(primitive)); | |||
| mean_param->keep_dims_ = mean->GetKeepDims(); | |||
| auto axisVector = mean->GetAxis(); | |||
| if (axisVector.size() > REDUCE_MAX_AXES_NUM) { | |||
| MS_LOG(ERROR) << "Reduce axes size " << axisVector.size() << " exceed limit " << REDUCE_MAX_AXES_NUM; | |||
| free(mean_param); | |||
| return nullptr; | |||
| } | |||
| mean_param->num_axes_ = static_cast<int>(axisVector.size()); | |||
| int i = 0; | |||
| for (auto iter = axisVector.begin(); iter != axisVector.end(); iter++) { | |||
| mean_param->axes_[i++] = *iter; | |||
| } | |||
| mean_param->mode_ = static_cast<int>(schema::ReduceMode_ReduceMean); | |||
| return reinterpret_cast<OpParameter *>(mean_param); | |||
| } | |||
| Registry MeanParameterRegistry(schema::PrimitiveType_Mean, PopulateMeanParameter); | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -67,7 +67,6 @@ | |||
| #include "src/ops/slice.h" | |||
| #include "src/ops/squeeze.h" | |||
| #include "src/ops/flatten.h" | |||
| #include "src/ops/mean.h" | |||
| #include "src/ops/nhwc2nchw.h" | |||
| #include "src/ops/stack.h" | |||
| #include "src/ops/crop.h" | |||
| @@ -710,8 +709,6 @@ PrimitiveC *PrimitiveC::Create(mindspore::schema::PrimitiveT *primitive) { | |||
| return new (std::nothrow) Squeeze(primitive); | |||
| case schema::PrimitiveType_Flatten: | |||
| return new (std::nothrow) Flatten(primitive); | |||
| case schema::PrimitiveType_Mean: | |||
| return new (std::nothrow) Mean(primitive); | |||
| case schema::PrimitiveType_Stack: | |||
| return new (std::nothrow) Stack(primitive); | |||
| case schema::PrimitiveType_Crop: | |||
| @@ -26,7 +26,6 @@ using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_NULL_PTR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_Mean; | |||
| using mindspore::schema::PrimitiveType_Reduce; | |||
| namespace mindspore::kernel { | |||
| @@ -206,17 +205,6 @@ kernel::LiteKernel *CpuMeanFp32KernelCreator(const std::vector<lite::Tensor *> & | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter, | |||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| MS_ASSERT(opParameter != nullptr); | |||
| MS_ASSERT(desc.type == schema::PrimitiveType_Mean); | |||
| if (opParameter == nullptr) { | |||
| MS_LOG(ERROR) << "Reduce opParameter nullptr"; | |||
| return nullptr; | |||
| } | |||
| if (desc.type != schema::PrimitiveType_Mean) { | |||
| MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Mean, got " << desc.type; | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| auto *kernel = new (std::nothrow) ReduceCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed."; | |||
| @@ -236,6 +224,4 @@ kernel::LiteKernel *CpuMeanFp32KernelCreator(const std::vector<lite::Tensor *> & | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt, PrimitiveType_Reduce, CpuReduceFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Mean, CpuMeanFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -28,7 +28,6 @@ using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_NULL_PTR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_Mean; | |||
| using mindspore::schema::PrimitiveType_Reduce; | |||
| using mindspore::schema::ReduceMode; | |||
| using mindspore::schema::ReduceMode_ReduceMax; | |||
| @@ -191,17 +190,6 @@ kernel::LiteKernel *CpuMeanFp16KernelCreator(const std::vector<lite::Tensor *> & | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter, | |||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| MS_ASSERT(opParameter != nullptr); | |||
| MS_ASSERT(desc.type == schema::PrimitiveType_Mean); | |||
| if (opParameter == nullptr) { | |||
| MS_LOG(ERROR) << "Reduce opParameter nullptr"; | |||
| return nullptr; | |||
| } | |||
| if (desc.type != schema::PrimitiveType_Mean) { | |||
| MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Mean, got " << desc.type; | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| auto *kernel = new (std::nothrow) ReduceFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed."; | |||
| @@ -219,5 +207,4 @@ kernel::LiteKernel *CpuMeanFp16KernelCreator(const std::vector<lite::Tensor *> & | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reduce, CpuReduceFp16KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Mean, CpuMeanFp16KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -28,7 +28,6 @@ using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_NULL_PTR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_Mean; | |||
| using mindspore::schema::PrimitiveType_Reduce; | |||
| using mindspore::schema::ReduceMode; | |||
| using mindspore::schema::ReduceMode_ReduceAll; | |||
| @@ -35,7 +35,6 @@ using mindspore::schema::ReduceMode_ReduceSum; | |||
| using mindspore::schema::ReduceMode_ReduceSumSquare; | |||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||
| using mindspore::schema::PrimitiveType_Mean; | |||
| using mindspore::schema::PrimitiveType_Reduce; | |||
| namespace mindspore::kernel { | |||
| @@ -536,17 +535,6 @@ kernel::LiteKernel *CpuReduceInt8KernelCreator(const std::vector<lite::Tensor *> | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter, | |||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| MS_ASSERT(opParameter != nullptr); | |||
| MS_ASSERT(desc.type == schema::PrimitiveType_Reduce); | |||
| if (opParameter == nullptr) { | |||
| MS_LOG(ERROR) << "Reduce opParameter nullptr"; | |||
| return nullptr; | |||
| } | |||
| if (desc.type != schema::PrimitiveType_Reduce) { | |||
| MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Reduce, got " << desc.type; | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| auto *kernel = new (std::nothrow) ReduceInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed."; | |||
| @@ -563,6 +551,4 @@ kernel::LiteKernel *CpuReduceInt8KernelCreator(const std::vector<lite::Tensor *> | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Reduce, CpuReduceInt8KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Mean, CpuReduceInt8KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -28,7 +28,6 @@ using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_NULL_PTR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::lite::RET_PARAM_INVALID; | |||
| using mindspore::schema::PrimitiveType_Mean; | |||
| using mindspore::schema::PrimitiveType_Reduce; | |||
| using mindspore::schema::ReduceMode; | |||
| using mindspore::schema::ReduceMode_ReduceMax; | |||
| @@ -183,8 +182,6 @@ int ReduceOpenCLKernel::Run() { | |||
| return mindspore::lite::RET_OK; | |||
| } | |||
| REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Mean, OpenCLKernelCreator<ReduceOpenCLKernel>) | |||
| REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Mean, OpenCLKernelCreator<ReduceOpenCLKernel>) | |||
| REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Reduce, OpenCLKernelCreator<ReduceOpenCLKernel>) | |||
| REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Reduce, OpenCLKernelCreator<ReduceOpenCLKernel>) | |||
| } // namespace mindspore::kernel | |||
| @@ -103,7 +103,6 @@ static const std::vector<schema::PrimitiveType> int8OpList = {schema::PrimitiveT | |||
| schema::PrimitiveType_BatchToSpace, | |||
| schema::PrimitiveType_BatchToSpaceND, | |||
| schema::PrimitiveType_Reduce, | |||
| schema::PrimitiveType_Mean, | |||
| schema::PrimitiveType_Round, | |||
| schema::PrimitiveType_Floor, | |||
| schema::PrimitiveType_Ceil, | |||
| @@ -520,7 +520,6 @@ QuantParamCalcRegister::QuantParamCalcRegister() { | |||
| _registerMap[schema::PrimitiveType_RealDiv] = std::make_shared<CalcRealDiv>(); | |||
| _registerMap[schema::PrimitiveType_Reduce] = commonCalcer; | |||
| _registerMap[schema::PrimitiveType_BiasAdd] = std::make_shared<BiasAddCalcer>(); | |||
| _registerMap[schema::PrimitiveType_Mean] = linearCalcer; | |||
| _registerMap[schema::PrimitiveType_Transpose] = linearCalcer; | |||
| _registerMap[schema::PrimitiveType_MatMul] = std::make_shared<ConvCalcer>(); | |||
| _registerMap[schema::PrimitiveType_FullConnection] = std::make_shared<ConvCalcer>(); | |||