From: @wilfchen Reviewed-by: @limingqi107,@cristoval Signed-off-by: @cristovaltags/v1.1.0
| @@ -78,44 +78,38 @@ class GpuKernelRegister { | |||
| // variable has been created. | |||
| #define uchar unsigned char | |||
| #define UNIQUE_KERNEL_NAME(kernel) KERNEL_NAME(kernel, __COUNTER__) | |||
| #define UNIQUE_KERNEL_NAME(kernel) KERNEL_NAME(g_##kernel##_gpu_kernel_reg, __COUNTER__) | |||
| #define KERNEL_NAME(kernel, cnt) MERGE(kernel, cnt) | |||
| #define MERGE(kernel, cnt) kernel##cnt | |||
| #define MS_REG_GPU_KERNEL(OPNAME, OPCLASS) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(g_##OPNAME##_gpu_kernel_reg)(#OPNAME, KernelAttr(), \ | |||
| []() { return new OPCLASS(); }); | |||
| #define MS_REG_GPU_KERNEL(OPNAME, OPCLASS) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(OPNAME)(#OPNAME, KernelAttr(), []() { return new OPCLASS(); }); | |||
| // regular register of fixed accuracy kernels | |||
| #define MS_REG_GPU_KERNEL_REGULAR(OPNAME, ATTR, OPCLASS) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(g_##OPNAME##_gpu_kernel_reg)(#OPNAME, ATTR, \ | |||
| []() { return new OPCLASS(); }); | |||
| #define MS_REG_GPU_KERNEL_REGULAR(OPNAME, ATTR, OPCLASS) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(OPNAME)(#OPNAME, ATTR, []() { return new OPCLASS(); }); | |||
| // register of mixed accuracy kernels which use template and maintain one typename, ignore input num | |||
| #define MS_REG_GPU_KERNEL_SAME(OPNAME, ATTR, OPCLASS, T) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS<T>>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(g_##OPNAME##_##T##_gpu_kernel_reg)( \ | |||
| #OPNAME, ATTR, []() { return new OPCLASS<T>(); }); | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(OPNAME)(#OPNAME, ATTR, []() { return new OPCLASS<T>(); }); | |||
| // register of mixed accuracy kernels which use template and maintain one typename | |||
| #define MS_REG_GPU_KERNEL_ONE(OPNAME, ATTR, OPCLASS, T) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS<T>>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(g_##OPNAME##_##T##_gpu_kernel_reg)( \ | |||
| #OPNAME, ATTR, []() { return new OPCLASS<T>(); }); | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(OPNAME)(#OPNAME, ATTR, []() { return new OPCLASS<T>(); }); | |||
| // register of mixed accuracy kernels which use template and maintain two typename | |||
| #define MS_REG_GPU_KERNEL_TWO(OPNAME, ATTR, OPCLASS, T, S) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS<T, S>>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(g_##OPNAME##_##T##_##S##_gpu_kernel_reg)( \ | |||
| #OPNAME, ATTR, []() { return new OPCLASS<T, S>(); }); | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(OPNAME)(#OPNAME, ATTR, []() { return new OPCLASS<T, S>(); }); | |||
| // register of mixed accuracy kernels which use template and maintain three typename | |||
| #define MS_REG_GPU_KERNEL_THREE(OPNAME, ATTR, OPCLASS, T, S, G) \ | |||
| static_assert(std::is_base_of<GpuKernel, OPCLASS<T, S, G>>::value, " must be base of GpuKernel"); \ | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(g_##OPNAME##_##T##_##S##_##G##_gpu_kernel_reg)( \ | |||
| #OPNAME, ATTR, []() { return new OPCLASS<T, S, G>(); }); | |||
| static const GpuKernelRegister UNIQUE_KERNEL_NAME(OPNAME)(#OPNAME, ATTR, []() { return new OPCLASS<T, S, G>(); }); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_GPUKERNELFACTORY_H_ | |||
| @@ -62,7 +62,7 @@ const AnfNodePtr ConvertConstInputToAttr::Process(const FuncGraphPtr &, const An | |||
| continue; | |||
| } | |||
| } | |||
| if (AnfAlgo::IsDynamicShape(cnode) && | |||
| if (AnfAlgo::IsNodeDynamicShape(cnode) && | |||
| DynamicShapeConstInputToAttr.find(AnfAlgo::GetCNodeName(cnode)) == DynamicShapeConstInputToAttr.end()) { | |||
| MS_LOG(INFO) << "current node is dynamic shape " << cnode->fullname_with_scope(); | |||
| continue; | |||
| @@ -42,24 +42,10 @@ void DynamicKernel::Initialize() { | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "Have depends"; | |||
| std::vector<int> depends_list; | |||
| std::vector<int64_t> depends_list_me = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(cnode_ptr_, kDynamicShapeDepends); | |||
| (void)std::transform(depends_list_me.begin(), depends_list_me.end(), std::back_inserter(depends_list), | |||
| (void)std::transform(depends_list_me.begin(), depends_list_me.end(), std::back_inserter(depend_list_), | |||
| [](const int64_t &value) { return static_cast<int>(value); }); | |||
| // Save depend input tensor. Sync data in InferShape. | |||
| for (auto depend : depends_list) { | |||
| auto pre_node_with_index = AnfAlgo::GetPrevNodeOutput(cnode_ptr_, depend); | |||
| auto output_addr = AnfAlgo::GetPrevNodeMutableOutputAddr(cnode_ptr_, depend); | |||
| std::vector<int64_t> shapes = trans::GetRuntimePaddingShape(pre_node_with_index.first, pre_node_with_index.second); | |||
| auto host_type = AnfAlgo::GetOutputInferDataType(pre_node_with_index.first, pre_node_with_index.second); | |||
| auto out_tensor = std::make_shared<tensor::Tensor>(host_type, shapes); | |||
| out_tensor->set_device_address(output_addr); | |||
| auto ret = depend_tensor_map_.try_emplace(depend, out_tensor); | |||
| if (!ret.second) { | |||
| MS_LOG(EXCEPTION) << "Insert map failed"; | |||
| } | |||
| } | |||
| MS_LOG(INFO) << "Init End"; | |||
| } | |||
| @@ -74,6 +60,22 @@ bool IsTupleGetItem(const AnfNodePtr &anf_node) { | |||
| return IsPrimitive(input0, prim::kPrimTupleGetItem); | |||
| } | |||
| void DynamicKernel::RebuildDependTensor() { | |||
| depend_tensor_map_.clear(); | |||
| for (auto depend : depend_list_) { | |||
| auto pre_node_with_index = AnfAlgo::GetPrevNodeOutput(cnode_ptr_, depend); | |||
| auto output_addr = AnfAlgo::GetPrevNodeMutableOutputAddr(cnode_ptr_, depend); | |||
| std::vector<int64_t> shapes = trans::GetRuntimePaddingShape(pre_node_with_index.first, pre_node_with_index.second); | |||
| auto host_type = AnfAlgo::GetOutputInferDataType(pre_node_with_index.first, pre_node_with_index.second); | |||
| auto out_tensor = std::make_shared<tensor::Tensor>(host_type, shapes); | |||
| out_tensor->set_device_address(output_addr); | |||
| auto ret = depend_tensor_map_.try_emplace(depend, out_tensor); | |||
| if (!ret.second) { | |||
| MS_LOG(EXCEPTION) << "Insert map failed"; | |||
| } | |||
| } | |||
| } | |||
| void DynamicKernel::InferShape() { | |||
| if (!is_input_dynamic_shape_ && is_output_dynamic_shape_ && !have_depends()) { | |||
| return; | |||
| @@ -88,12 +90,15 @@ void DynamicKernel::InferShape() { | |||
| AbstractBasePtrList args_spec_list; | |||
| auto primitive = GetValueNode<PrimitivePtr>(inputs[0]); | |||
| // rebuild depend tensor map for gpu dynamic memory allocation. | |||
| RebuildDependTensor(); | |||
| auto input_size = AnfAlgo::GetInputTensorNum(cnode_ptr_); | |||
| for (size_t i = 0; i < input_size; ++i) { | |||
| auto input_with_index = AnfAlgo::GetPrevNodeOutput(cnode_ptr_, i); | |||
| auto real_input = input_with_index.first; | |||
| MS_EXCEPTION_IF_NULL(real_input); | |||
| auto ret = depend_tensor_map_.find(i); | |||
| if (ret != depend_tensor_map_.end()) { | |||
| auto tensor_ptr = ret->second; | |||
| @@ -19,6 +19,7 @@ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| #include <map> | |||
| #include "ir/anf.h" | |||
| #include "ir/tensor.h" | |||
| @@ -44,16 +45,19 @@ class DynamicKernel { | |||
| bool is_dynamic_shape() const { return is_dynamic_shape_; } | |||
| bool is_input_dynamic_shape() const { return is_input_dynamic_shape_; } | |||
| bool is_output_dynamic_shape() const { return is_output_dynamic_shape_; } | |||
| bool have_depends() const { return !depend_tensor_map_.empty(); } | |||
| bool have_depends() const { return !depend_list_.empty(); } | |||
| virtual void Initialize(); | |||
| std::string GetKernelName() { return cnode_ptr_->fullname_with_scope(); } | |||
| protected: | |||
| void RebuildDependTensor(); | |||
| void *stream_; | |||
| const CNodePtr cnode_ptr_; | |||
| bool is_dynamic_shape_; | |||
| bool is_input_dynamic_shape_; | |||
| bool is_output_dynamic_shape_; | |||
| std::vector<uint32_t> depend_list_; | |||
| std::map<uint32_t, tensor::TensorPtr> depend_tensor_map_; | |||
| }; | |||
| using DynamicKernelPtr = std::shared_ptr<DynamicKernel>; | |||
| @@ -37,7 +37,6 @@ | |||
| #include "utils/shape_utils.h" | |||
| #include "debug/data_dump/dump_json_parser.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "runtime/device/executor/executor_callback.h" | |||
| #ifdef ENABLE_DEBUGGER | |||
| #include "debug/debug_services.h" | |||
| #endif | |||
| @@ -369,7 +368,7 @@ bool GPUKernelRuntime::Run(session::KernelGraph *graph, bool is_task_sink) { | |||
| bool GPUKernelRuntime::RunOneStep(const session::KernelGraph *graph) { | |||
| bool ret = true; | |||
| auto graph_id = graph->graph_id(); | |||
| if (!is_first_step_map_[graph_id]) { | |||
| if (!is_first_step_map_[graph_id] || graph->is_dynamic_shape()) { | |||
| // Normally run graph | |||
| ret = LaunchKernelDynamic(graph); | |||
| } else { | |||
| @@ -603,16 +602,7 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo | |||
| dynamic_kernel = gpu_kernel->DynamicKernel(); | |||
| } | |||
| if (dynamic_kernel && dynamic_kernel->have_depends()) { | |||
| MS_LOG(INFO) << "Match Dynamic Kernel, Start SyncStream"; | |||
| if (!SyncStream()) { | |||
| MS_LOG(ERROR) << "SyncStream failed"; | |||
| return false; | |||
| } | |||
| } | |||
| if (dynamic_kernel && dynamic_kernel->is_dynamic_shape()) { | |||
| ExecutorCallback::GetInstance().Consume(); | |||
| dynamic_kernel->InferShape(); | |||
| dynamic_kernel->UpdateArgs(); | |||
| } | |||
| @@ -645,9 +635,10 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo | |||
| LaunchKernelWithTimeProfiling(kernel, kernel_inputs, kernel_workspaces, kernel_outputs); | |||
| } | |||
| ExecutorCallback::GetInstance().RegistCallback([&gpu_kernel] { | |||
| if (gpu_kernel) gpu_kernel->PostExecute(); | |||
| }); | |||
| if (gpu_kernel && dynamic_kernel && dynamic_kernel->is_dynamic_shape()) { | |||
| gpu_kernel->PostExecute(); | |||
| } | |||
| // called once per kernel to collect the outputs to the kernel (does a SyncDeviceToHost) | |||
| LoadKernelData(debugger_.get(), kernel, kernel_inputs, kernel_workspaces, kernel_outputs, exec_order, stream_, | |||
| dump_enabled); | |||
| @@ -666,7 +657,6 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo | |||
| // collect weights and bias for dump mode | |||
| debugger_->LoadParametersAndConst(); | |||
| CHECK_OP_RET_WITH_EXCEPT(SyncStream(), "SyncStream failed."); | |||
| ExecutorCallback::GetInstance().Consume(); | |||
| } | |||
| ClearSwapInfo(mock); | |||
| return true; | |||