|
|
|
@@ -182,6 +182,7 @@ class SummaryCollector(Callback): |
|
|
|
self._custom_lineage_data = custom_lineage_data |
|
|
|
|
|
|
|
self._temp_optimizer = None |
|
|
|
self._has_saved_train_network = False |
|
|
|
self._has_saved_custom_data = False |
|
|
|
self._is_parse_loss_success = True |
|
|
|
self._first_step = True |
|
|
|
@@ -215,7 +216,7 @@ class SummaryCollector(Callback): |
|
|
|
@staticmethod |
|
|
|
def _check_positive(name, value, allow_none=False): |
|
|
|
"""Check if the value to be int type and positive.""" |
|
|
|
if allow_none: |
|
|
|
if allow_none and value is None: |
|
|
|
return |
|
|
|
check_value_type(name, value, int) |
|
|
|
if value <= 0: |
|
|
|
@@ -294,8 +295,9 @@ class SummaryCollector(Callback): |
|
|
|
|
|
|
|
self._collect_dataset_graph(cb_params) |
|
|
|
if self._collect_tensor_freq is None: |
|
|
|
default_tensor_summary_limit = 50 |
|
|
|
total_step = cb_params.epoch_num * cb_params.batch_num |
|
|
|
self._collect_tensor_freq = max(self._collect_freq, total_step // 50) |
|
|
|
self._collect_tensor_freq = max(self._collect_freq, total_step // default_tensor_summary_limit) |
|
|
|
|
|
|
|
if self._custom_lineage_data and not self._has_saved_custom_data: |
|
|
|
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data) |
|
|
|
@@ -309,6 +311,8 @@ class SummaryCollector(Callback): |
|
|
|
cb_params = run_context.original_args() |
|
|
|
if cb_params.mode != ModeEnum.TRAIN.value: |
|
|
|
return |
|
|
|
if not self._has_saved_train_network: |
|
|
|
self._collect_graphs(cb_params) |
|
|
|
if self._first_step: |
|
|
|
# Notice: This way of determining whether dataset sink mode is True does not work in the eval scenario |
|
|
|
self._dataset_sink_mode = cb_params.cur_step_num == cb_params.batch_num |
|
|
|
@@ -424,6 +428,7 @@ class SummaryCollector(Callback): |
|
|
|
if graph_proto is None: |
|
|
|
return |
|
|
|
|
|
|
|
self._has_saved_train_network = True |
|
|
|
self._record.add_value(PluginEnum.GRAPH.value, 'train_network/auto', graph_proto) |
|
|
|
|
|
|
|
def _collect_metric(self, cb_params): |
|
|
|
|