Browse Source

fix pylint

tags/v0.5.0-beta
unknown 5 years ago
parent
commit
75d77806c0
3 changed files with 5 additions and 8 deletions
  1. +1
    -4
      model_zoo/deeplabv3/README.md
  2. +1
    -1
      model_zoo/deeplabv3/src/losses.py
  3. +3
    -3
      model_zoo/deeplabv3/train.py

+ 1
- 4
model_zoo/deeplabv3/README.md View File

@@ -1,10 +1,7 @@
# Deeplab-V3 Example # Deeplab-V3 Example


## Description ## Description
- This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.
- Paper Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam

This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.


## Requirements ## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en). - Install [MindSpore](https://www.mindspore.cn/install/en).


+ 1
- 1
model_zoo/deeplabv3/src/losses.py View File

@@ -50,7 +50,7 @@ class OhemLoss(nn.Cell):
losses = self.cross_entropy(logits, one_hot_labels)[0] losses = self.cross_entropy(logits, one_hot_labels)[0]
weights = self.cast(self.not_equal(labels, self.ignore_label), mstype.float32) * self.loss_weight weights = self.cast(self.not_equal(labels, self.ignore_label), mstype.float32) * self.loss_weight
weighted_losses = self.mul(losses, weights) weighted_losses = self.mul(losses, weights)
loss = self.reduce_sum(weighted_losses,(0,))
loss = self.reduce_sum(weighted_losses, (0,))
zeros = self.fill(mstype.float32, self.shape(weights), 0.0) zeros = self.fill(mstype.float32, self.shape(weights), 0.0)
ones = self.fill(mstype.float32, self.shape(weights), 1.0) ones = self.fill(mstype.float32, self.shape(weights), 1.0)
present = self.select(self.equal(weights, zeros), zeros, ones) present = self.select(self.equal(weights, zeros), zeros, ones)


+ 3
- 3
model_zoo/deeplabv3/train.py View File

@@ -80,9 +80,9 @@ if __name__ == "__main__":
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck) ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
callback.append(ckpoint_cb) callback.append(ckpoint_cb)
net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size], net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
net.set_train() net.set_train()
model_fine_tune(args_opt, net, 'layer') model_fine_tune(args_opt, net, 'layer')
loss = OhemLoss(config.seg_num_classes, config.ignore_label) loss = OhemLoss(config.seg_num_classes, config.ignore_label)


Loading…
Cancel
Save