|
|
|
@@ -21,11 +21,12 @@ from mindspore.nn.optim import Momentum |
|
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size |
|
|
|
from mindspore.common import dtype as mstype |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
init('nccl') |
|
|
|
|
|
|
|
epoch = 2 |
|
|
|
epoch = 5 |
|
|
|
total = 5000 |
|
|
|
batch_size = 32 |
|
|
|
mini_batch = total // batch_size |
|
|
|
@@ -67,12 +68,20 @@ class LeNet(nn.Cell): |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): |
|
|
|
lr = [] |
|
|
|
for step in range(total_steps): |
|
|
|
lr_ = base_lr * gamma ** (step//gap) |
|
|
|
lr.append(lr_) |
|
|
|
return Tensor(np.array(lr), dtype) |
|
|
|
|
|
|
|
|
|
|
|
def test_lenet_nccl(): |
|
|
|
net = LeNet() |
|
|
|
net.set_train() |
|
|
|
|
|
|
|
learning_rate = 0.01 |
|
|
|
momentum = 0.9 |
|
|
|
learning_rate = multisteplr(epoch, 2) |
|
|
|
momentum = Tensor(np.array([0.9]).astype(np.float32)) |
|
|
|
mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) |
|
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) |
|
|
|
net_with_criterion = WithLossCell(net, criterion) |
|
|
|
|